1. Объясните, какая поверхность называется сферой и какое тело называется шаром. Выведите уравнение сферы.
2. Радиус шара равен 8 см. Через конец радиуса, лежащего на сфере, проведена плоскость под углом 45° к радиусу. Найдите площадь сечения шара этой плоскостью.
3. Концы отрезка АВ = 10 см лежат на
окружностях оснований цилиндра. Радиус Цилиндра равен 5 см, его высота 8 см.
Найдите расстояние между прямой AB иосью цилиндра.
пт рентннтрр
Объяснение:
нтне
Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии не больше данного от данной точки. Поверхность шара называется сферой.
Сфера - поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки.
Уравнение сферы на картинке
2. Изобразим схематически шар и диаметр АВ сечения, проведенного под углом 45° к его радиусу.
Треугольник АОВ - равнобедренный прямоугольный, и его гипотенуза ( диаметр сечения) равна 8√2
Радиус сечения вдвое меньше =4√2
Сечение шара плоскостью - круг.
Площадь круга
S=πr²
Площадь сечения = π (4√2)² =32 см²
3. Проводим ВВ₁ || OO₁
Треугольник АВВ₁ - прямоугольный
АВ₁=8 ( по теореме Пифагора) или потому то это египетский треугольник
АВ₁²=АВ²-ВВ₁²=10²-6²=64=8²
Рассмотрим треугольник АОВ₁ ( см рисунок справа)
Равнобедренный треугольник. проведем высоту ОК. По теореме Пифагора
ОК=3.
Или потому что треугольник АОК - египетский
ОК- расстояние между плоскостью, содержащей отрезок АВ и плоскостью, содержащей ось ОО₁