в ромбе ABCD два равных тупых угла (DAB, DCB) и два равных острых (ADC, ABC). Примите острый за х. AE -перпендикуляр из тупого угла к стороне DC, DE = EC. трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая) => в равных тр-ах против равных сторон лежат равные углы: ADE = ECA => ECA = ADC = ABC = x => DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса) сумма углов ромба равна 360 градусам => 2x + 2x +x + x = 360 ADC = ABC = x = 60 (острый угол ромба) DCB = DAB = 2х = 120 (тупой угол ромба).
Пусть О1, О2 и О3 - центры заданных окружностей с радиусами 12, 12 и 1 см.
Стороны треугольника с вершинами в этих точках равны 24 и 2 по 13 см.
Косинус угла α при вершинах О1 иО2 равен:
cos α = (24² + 13² - 13²)/(2*24*13) = 12/13.
Находим стороны АВ и АС треугольника АВС.
АВ = АС = √(12² + 12² -2*12*12*(12/13)) = 12√(2/13) см.
Сторона ВС из подобия равна: 24*(1/13) = 24/13 см.
Высота h треугольника АВС к стороне ВС равна:
h = √(АВ² - (ВС/2)²) = √((144*2/13) - (144/169)) = (12/13)√(26 - 1) = 60/13.
Площадь треугольника АВС равна:
S(АВС) = (1/2)*(24/13)*(60/13) = 720/169.
Радиус R окружности, описанной около треугольника ABC, равен:
R = (abc)/(4S) = ((12√(2/13))-(12√(2/13))*(24/13))/(4*(720/169)) = 1728/720 = 2,4 см.
AE -перпендикуляр из тупого угла к стороне DC, DE = EC.
трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая)
=> в равных тр-ах против равных сторон лежат равные углы: ADE = ECA
=> ECA = ADC = ABC = x
=> DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса)
сумма углов ромба равна 360 градусам =>
2x + 2x +x + x = 360
ADC = ABC = x = 60 (острый угол ромба)
DCB = DAB = 2х = 120 (тупой угол ромба).