1) Одна сторона равнобедренного треугольника в 1,5 раза больше другой, а периметр на 12 см больше основания. Найдите стороны треугольника. Сколько решений имеет задача? 2) Известно, что AC=CD, ∠A=∠B. Докажите, что DE=EB.
3) Известно, что AD=5, ∠ADE=∠AED, EC=2, AB=7. Докажите, что ∠B=∠C.
Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
Пусть ABCD -трапеция , AD || BC , BC< AD ; P(ABCD) =20 ,S((ABCD) =20 . трапецию можно вписать окружность; MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O). M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции . По условию задачи трапеция описана окружности , следовательно : AD+BC =(AB +CD) = P/2 =20/2 =10. AB =CD =5 ; S =(AB +BC) /2 *H ; 20 =5*H ⇒ H =4. Проведем BE ⊥AD и CF ⊥ AD, AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 . AD -BC =2*3 =6. { AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2. ΔAOD подобен ΔCOB : BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) . 2/8 =ON/ (4 -ON) ⇒ON =0,8.
По св-ву р/б тр. углы при основании равны =а
2а+120=180
2а=60
а=30
по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона
тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c
но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2
1/2c^2*sqrt(3)/2=9c
c=36/sqrt(3)
трапецию можно вписать окружность;
MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O).
M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции .
По условию задачи трапеция описана окружности , следовательно :
AD+BC =(AB +CD) = P/2 =20/2 =10.
AB =CD =5 ;
S =(AB +BC) /2 *H ;
20 =5*H ⇒ H =4.
Проведем BE ⊥AD и CF ⊥ AD,
AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 .
AD -BC =2*3 =6.
{ AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2.
ΔAOD подобен ΔCOB :
BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) .
2/8 =ON/ (4 -ON) ⇒ON =0,8.
ответ: 0,8.