1)Окружность с центром в точке O (1; 2) и радиусом R = 3 при параллельном переносе на вектор переходит в окружность с центром в точке O1. Выполните построения и укажите координаты точки O1.
2) В результате параллельного переноса точка А (–1; 3) переходит в точку А1 (2; 4), а точка В (1; –3) в точку В1. Найдите координаты точки В1.
3)Четырёхугольник ABCD задан координатами своих вершин A (2; 5), B (–3; 7), C (–6; 2), D (–1; –1). Выполните построения и укажите координаты вершин четырёхугольника A1B1C1D1, полученного путём параллельного переноса на вектор из четырёхугольника ABCD.
k нужно найти из отношения площадей.
Условие, что окружности касаются, означает, что
k*D - D = R + k*R; то есть R/D = (k* - 1)/(k + 1);
легко видеть, что R/D это синус половины угла, который надо найти, так как центры окружности лежат на биссектрисе.
Что касается величины к, то её нетрудно подобрать, k^2 = 97 + 56√3;
Легко видеть, что k^2 = 49 + 2*7*4√3 + 48 = (7 + 4√3)^2;
то есть k = 7 + 4√3; технически задача уже решена.
sin(α/2) = (7 + 4√3 - 1)/(7 + 4√3 +1) = √3/2; все преобразования сделайте сами. То есть α/2 = 60°; α = 120°;
1)Дано:тр.АВС,угол С=90 гр,СД-высота,угол АСД=4угламДСВ.
Найти:угол А,угол В.
Решение:
1)пусть угол ДСВ=х гр,тогда угол АСД=4х гр.
х+4х=90
5х=90
х=18
Значит,угол ДСВ=18 гр,угол АСД=72 гр.
2)угол А=90-72=18(гр);угол В=90-18=72(гр).
2)
треугольник АМВ прямоугольный,угол М=90градуссов,угол МВА=30 градуссов,АМ=половине АВ,так как катет лежит против угла в 30 градуссов,АМ=9 см
По теореме Пифагора можем найти ВМ,АВ в квадрате= АМ в квадрате +ВМ в квадрате
ВМ= корень квадратный из АВ в квадрате минус Ам в квадрате
ВМ=9 корней из 3 см