1. Определить, является ли линия окружностью, и если да, найти координаты центра и значение радиуса:
а) х2 + у2 – 2х + 4у + 4 = 0; б) х2 + у2 – 10у + 36 = 0; в) х2 – у2 + 6х + 2у + 1 = 0.
2. Выяснить расположение точки М(5; – 4) относительно окружности
х2 + у2 – 10х + 6у – 2 = 0.
3. Найти каноническое уравнение окружности с центром в точке S(5; – 6), если окружность касается прямой 3х + 4у – 2 = 0.
а-Н; б-В; в-Н; г-Н; д-В
Объяснение:
а) Равносторонний треугольник имеет ровно две оси симметрии; Н
равносторонний треугольник имеет три оси симметрии
б) Если все углы пятиугольника равны, то они имеют величину 108 градусов; В
сумма всех углов в пятиугольнике 540° а если углы равны то они будут по 540:5=108°
в) На каждой стороне треугольника существует точка, равноудаленная от двух других его сторон; Н
не всегда, возможно если треугольник равносторонний
г) В прямоугольном треугольнике высота, опущенная на гипотенузу, больше половины этой гипотенузы; Н
она меньше
д) Если внешний угол равнобедренного треугольника равен 100 градусов, то один из его углов равен 20 градусов. В
верно если этот внешний угол относится к основанию тогда
180-100=80 - угол при основании(равны)
180-80-80=20 - угол напротив основания
BC = √((0+√(2-√2))²+(10-√(2+√2))²) ≈ 8,188090
P = AB + CB + AC ≈ 27,2351
---------------------------------------------------------------------------------------
3. В полярной системе координат расстояния между точками можно находить по вытекающей из теоремы косинусов формуле
АB=SQRT(9^2+10^2-2*9*10*cos(9Pi/10-Pi/2)) = sqrt(181-45(sqrt(5) - 1)) ≈ 11,197185
BC=SQRT(10^2+2^2-2*10*2*cos(Pi/2-5Pi/8)) = sqrt(104-20sqrt(2+sqrt(2))) ≈ 8,188090
CА=SQRT(2^2+9^2-2*2*9*cos(5Pi/8-9Pi/10)) = sqrt(85-36sin((9π)/40)) ≈ 7,849832
Результат тот же ,что и во втором разделе
P = AB + CB + AC ≈ 27,2351