1) определите, какая температура воздуха будет на вершине горы высотой 300 м.если у подножия горы её значение составляет +12 °с2) определите, какая температура будет у подножия горы с относительной высотой4км, если на вершине горы температура воздуха составляет -10 °с3) определите, какая температура
воздуха будет на вершине горы высотой 3км.если у подножия горы её значение составляет -2 °с
1. При пересечении прямых a и b секущей с сумма внутренних односторонних углов 123+67=190, что больше 180, следовательно прямые a и b не параллельны.
2. Внешний угол равен сумме внутренних, не смежных с ним.
CBV =D+C => 21x +7 =7x +9 +40 => 14x =42 => x=3
CBV =63+7 =70°
3. Внешние углы равны, следовательно смежные с ними внутренние также равны - треугольник равнобедренный.
Возможны два случая:
1) боковые стороны 12, тогда основание 38-12*2=14
2) основание 12, тогда боковые стороны (38-12)/2=13
ответ: {12, 12, 14} или {13, 13, 12} в сантиметрах
4. Внешний угол равен сумме внутренних, не смежных с ним.
120 =90 +B => B=30
Катет против угла 30 равен половине гипотенузы.
AC=x, AB=2x
AC+AB =21 => 3x=21 => x=7
AC=7 см, AB=14 см
В правильной усеченной четырехугольной пирамиде диагонали оснований равны 10 см и 6 см, а боковая грань образует с плоскостью основания угол 60 градусов. Найти высоту усеченной пирамиды.
Объяснение:
1) АВСDA₁B₁C₁D₁- усеченная пирамида , Точки О и О₁ -точки пересечения диагоналей оснований Т.к пирамида правильная , то основания кавдраты.
АВСD- нижнее основание , по т. Пифагора АВ=√(10²:2)=5√2 (см).
A₁B₁C₁D₁-верхнее основание , по т. Пифагора A₁B₁=√(6²:2)=3√2 (см).
2) Проведем через точки О и О₁ отрезки МН и М₁Н₁ перпендикулярно сторонам квадратов.Тк О₁Н₁ ⊥ВС, то SH⊥ВС по т. о трех перпендикулярах . Поэтому линейным углом между плоскостью боковой грани и плоскостью основания будет ∠НН₁М=60°.
3) Рассмотрим сечение , проходящее через МН и М₁Н₁ перпендикулярно сторонам основаниям. В сечении получилась равнобедренная трапеция ММ₁Н₁Н.
Проведем высоты М₁К и Н₁Р в трапеции . Тогда КР=М₁Н₁ =3√2 см , а МК=РН=( 5√2-3√2):2=√2 (см).
ΔРНН₁ -прямоугольный , tg60°=PН₁ /PH , √3=PН₁ /√2 , PН₁ =√6 см.
Поэтому высота усеченной пирамиды √6 см.