Так как не уточнено, как именно располагается угол 30 градусов относительно катета в 24 см, то возможно два варианта решения. Они различаются только цифрами, а суть одна.
Прямоугольный треугольник в основании. Один катет равен 24. Прилежащий угол равен 30 градусов. Найдем гипотенузу:
cos30 = 24/гипотенузу.
гипотенуза = = .
второй катет по теореме Пифагора будет равен:
катет2 = = .
площадь прямоугольного треугольника в основании:
S(тр) = =
ТАких треугольников в призме 2.
Сама призма - прямая, значит грани перпендикулярны оснвоанию. Большая боковая грань будет опираться на гипотенузу. Ее диагональ находится к плоскости основания под углом 45 градусов. Треугольник образованный высотой призмы, этой диагональю и гипотенузой будет прямоугольным и равнобедренным. (один угол 90, на два дргуих остается 90, Раз один из них равен 45, то и второй тоже будет 45). Из всего этого следует, что высота призмы численно арвна гипотенузе - .
Находим площадь грани, опирающей на гипотенузу:
этот прямоугольник = = 768.
площадь грани, опирающейся на катет 24 см:
S = =
площадь грани, опирающейся на катет :
S = = 384.
Теперь суммируем все площади и получаем полную боковую поверхность призмы:
S(полн) = + 768 + + 384 =
Угол 30 градусов в треугольнике основания является противолежащим относительно катета 24 см.
Тогда гипотенуза вдвое больше катета:
гипотенуза = 24*2 = 48.
второй катет = = .
Так как треугольник в основании приумиды равен верхнему, то можно сразу найти их суммарную площадь (площадь одного треугольника = произведению катетов, деленному на2, а их сумма - это все равно, что помножить площадь одного треугольника на 2, то есть 2 сокращается).
S(обоих тр) = =
Высота призмы = 48.
Площадь прямоугольника, опирающегося на гипотенузу:
S = (48*48) = 2304.
площадь прямоугольника, опирающегося на катет 24 см:
S = 24*48 = 1152
площадь прямоугольника, опирающегося на второй катет:
S = =
S(общая) = + 2304 + 1152 + =
Полные выкладки делать некогда, поэтому советую числа перепроверить, потому как решала быстро.
Если соединить концы двух медиан, то получится средняя линяя, которая равна половине основания и параллельна ему ("основанием" названа сторона, из концов которой выходят медианы). Поэтому подобны два треугольника, вершины которых - в точке пересечения медиан, а сторонами являются - основание и два отрезка медиан (у одного) и средняя линия и два других отрезка медиан (у второго тр-ка). То есть стороны одного в два раза больше сторон другого. Поэтому точка пересечения медиан делит каждую медиану в пропорции "два к одному". А это означает, что эта точка не зависит от выбора пары медиан, то есть все три медианы проходят через одну точку.
Так как не уточнено, как именно располагается угол 30 градусов относительно катета в 24 см, то возможно два варианта решения. Они различаются только цифрами, а суть одна.
Прямоугольный треугольник в основании. Один катет равен 24. Прилежащий угол равен 30 градусов. Найдем гипотенузу:
cos30 = 24/гипотенузу.
гипотенуза = = .
второй катет по теореме Пифагора будет равен:
катет2 = = .
площадь прямоугольного треугольника в основании:
S(тр) = =
ТАких треугольников в призме 2.
Сама призма - прямая, значит грани перпендикулярны оснвоанию. Большая боковая грань будет опираться на гипотенузу. Ее диагональ находится к плоскости основания под углом 45 градусов. Треугольник образованный высотой призмы, этой диагональю и гипотенузой будет прямоугольным и равнобедренным. (один угол 90, на два дргуих остается 90, Раз один из них равен 45, то и второй тоже будет 45). Из всего этого следует, что высота призмы численно арвна гипотенузе - .
Находим площадь грани, опирающей на гипотенузу:
этот прямоугольник = = 768.
площадь грани, опирающейся на катет 24 см:
S = =
площадь грани, опирающейся на катет :
S = = 384.
Теперь суммируем все площади и получаем полную боковую поверхность призмы:
S(полн) = + 768 + + 384 =
Угол 30 градусов в треугольнике основания является противолежащим относительно катета 24 см.
Тогда гипотенуза вдвое больше катета:
гипотенуза = 24*2 = 48.
второй катет = = .
Так как треугольник в основании приумиды равен верхнему, то можно сразу найти их суммарную площадь (площадь одного треугольника = произведению катетов, деленному на2, а их сумма - это все равно, что помножить площадь одного треугольника на 2, то есть 2 сокращается).
S(обоих тр) = =
Высота призмы = 48.
Площадь прямоугольника, опирающегося на гипотенузу:
S = (48*48) = 2304.
площадь прямоугольника, опирающегося на катет 24 см:
S = 24*48 = 1152
площадь прямоугольника, опирающегося на второй катет:
S = =
S(общая) = + 2304 + 1152 + =
Полные выкладки делать некогда, поэтому советую числа перепроверить, потому как решала быстро.
Если соединить концы двух медиан, то получится средняя линяя, которая равна половине основания и параллельна ему ("основанием" названа сторона, из концов которой выходят медианы). Поэтому подобны два треугольника, вершины которых - в точке пересечения медиан, а сторонами являются - основание и два отрезка медиан (у одного) и средняя линия и два других отрезка медиан (у второго тр-ка). То есть стороны одного в два раза больше сторон другого. Поэтому точка пересечения медиан делит каждую медиану в пропорции "два к одному". А это означает, что эта точка не зависит от выбора пары медиан, то есть все три медианы проходят через одну точку.