S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
Попробую стать лаской. Хотя обычно я злой, очень злой.
Давай попробуем рассуждать логически. В маленьком треугольнике, отсекаемом от заданного высотой, нам даны катет 12 (он равен высоте большого), и гипотенуза 24 (она равна катету большого). Из этого можем найти второй катет маленького, назовём его банальной буквой х. По теореме Пифагора, х^2 = 24^2 - 12^2 = 432 х = корень(432) = 12*корень(3).
теперь нам нужно заметить, что маленький и большой треугольники подобны по трём углам (у них обоих имеется прямой угол, и ещё один из острых углов у них общий). При этом у большого треугольника катет дан 24 см, а у маленького мы нашли в предыдущем действии 12*корень(3). Значит можем составить пропорцию.
Назовём гипотенузу большого треугольника, которую нужно найти банальной буквой у. Тогда у / 24 = 24 / (12*корень(3)) Отсюда у = 24 * 24 / (12*корень(3)) = 48 / корень(3) = 16*корень(3) Если угодно в цифрах, то 16 * 1,732 = примерно 27,71 см
Ну так у меня получилось. Уж не знаю обманул тебя или правду сказал.
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
Давай попробуем рассуждать логически. В маленьком треугольнике, отсекаемом от заданного высотой, нам даны катет 12 (он равен высоте большого), и гипотенуза 24 (она равна катету большого). Из этого можем найти второй катет маленького, назовём его банальной буквой х. По теореме Пифагора,
х^2 = 24^2 - 12^2 = 432
х = корень(432) = 12*корень(3).
теперь нам нужно заметить, что маленький и большой треугольники подобны по трём углам (у них обоих имеется прямой угол, и ещё один из острых углов у них общий). При этом у большого треугольника катет дан 24 см, а у маленького мы нашли в предыдущем действии 12*корень(3). Значит можем составить пропорцию.
Назовём гипотенузу большого треугольника, которую нужно найти банальной буквой у. Тогда
у / 24 = 24 / (12*корень(3))
Отсюда у = 24 * 24 / (12*корень(3)) = 48 / корень(3) = 16*корень(3)
Если угодно в цифрах, то 16 * 1,732 = примерно 27,71 см
Ну так у меня получилось. Уж не знаю обманул тебя или правду сказал.