1). От треугольной пирамиды, объем которой равен 34, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.
2). Объем параллелепипеда ABCDA1B1C1D1 равен 3,3. Найдите объем треугольной пирамиды ABCB1.
3). Объем куба равен 123. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.
2) Через данную точку М нужно построить перпендикуляр к биссектрисе. Для этого проведем окружность с произвольным радиусом, пересекающую стороны биссектрисы в 2х точках F и E. Проведем окружности в центрах с точками F и E с радиусом FE. Они пересекаются в 2х точках X и Y. проведем прямую XY-перпендикуляр к биссектрисе AK.
3) Получилось, что треугольник с вершиной в точке А-равнобедренный, т.к биссектриса является высотой. Значит мы построили то что надо было.
2)Отложим с циркуля ОА1=ОВ1( на сторонах угла
3)Получим тр-ник А1ОВ1
4)Проведём прямую через точку М параллельную А1В1. Эта прямая-искомая
(проводим так; прикладываем к А1В1 сторону(катет) треугольника, а к ддругому катету(стороне треугольника) -линейку. Линейку держим неподвижно, а треугольник двигаем вдоль линейки(до точки М). Проводим прямую(должно быть прямая || A1B1
Доказательство Треуг-ки-подобны(по двум углам, один О, а другие -уг ОВ1А1-угОВА-соответственные при парал-ных и секущейОВ
Тр-ник ОВ1А1-равнобедр-й по построению, тогдаОАВ-равн-ный, отсюда ОА=ОВ, что и требовалосьполучить
Исследование, задача имеет един. решение!