1. отрезок ак – медиана треугольника авс с прямым углом с. докажите, что ∠вак< ∠авс< ∠акс< ∠асв. 2. прямые, содержащие биссектрисы внешних углов при вершинах в и с треугольника авс, пересекаются в точке о. найдите угол вос, если угол а равен 50 градусов
Дали нам высоту проведенную на гипотенузу, а значит вершина угла из которого вышла высота : угол BCA ( ты написал все без чертежа, я сделал свой чертеж по твоему условию)
А угол BCA= 90 градусов
Так же знаем угол ACK =34 градуса,
Так же по свойству высоты мы знаем что CK перпендикулярен AB , а значит СKB = 90 градусов.
Что бы найти угол В, мы должны знать все углы треугольника BCK
Находим угол BCK = 90-34= 56
Теперь делаем уравнение:
56+90+угол В= 180 градусов
И получаем что угол В = 34 градуса
Задание №1
Объяснение:
Пирамида SABCD. Апофема SH - высота треугольника SAB. O - точка пересечения диагоналей основания, SO - высота пирамиды.
1) Рассмотрим прямоугольный треугольник OHS. По теореме пифагора:
OH² = SH² - SO²
OH² = 4a² - 3a²
OH = a
По теореме Фалеса: BC = 2OH = 2a
Сторона основания 2a
2) SHO - линейный угол двугранного угла SABO. Найдя его, найдем и SABO, следовательно угол между боковой гранью и основанием.
Из прямоугольного треугольника SHO:
sin<SHO = SO/SH
sin<SHO = a√3/2a = √3/2
<SHO = 60°
Угол между боковой гранью и основанием 60°
3) S = Sбок + Sосн
В основании квадрат, значит Sосн = AB² = (2a)² = 4a²
Sбок = Pосн*SH/2
Pосн = 4*2a = 8a
Sбок = 8a*2a/2 = 8a²
S = 8a² + 4a² = 12a²
Площадь 12а²
4) Из точки О (это и есть центр основания) проводим перпендикуляр к апофеме SH, обозначаем H1. SH1 - расстояние от центра основания до плоскости боковой грани.
Из прямоугольного треугольника OH1H:
sin<SHO = OH1/OH
но sin<SHO = √3/2
√3/2 = OH1/a
OH1 = a√3/2
ответы: a; 60°; 12а²; a√3/2