1. Паралельне перенесення задано формулами х'=х+2; у'=у-2. а) Визначити координати точок А' і В', у які при даному паралельному перенесенні переходять точки А(2; 3) і В(-2; -1).
б) Побудувати відрізок МС, симетричний відрізку АВ відносно початку координат. Записати координати його кінців.
в) Побудувати відрізок ЕР, симетричний відрізку А'В' відносно осі ординат. Записати координати його кінців.
Дотична пряма до кола в евклідовій геометрії на площині — пряма, що дотикається до кола тільки в одній точці та не містить внутрішніх точок кола. Грубо кажучи, це пряма, яка проходить через пару нескінченно близьких точок на колі. Дотичні прямі до кола застосовуються у багатьох геометричних побудовах і доведеннях. Так як, дотична пряма до кола є перпендикуляром до радіуса кола, проведеного в точку дотику, то зазвичай теореми в яких розглядаються дотичні прямі, часто використовують у формулюванні такі радіуси або ортогональні кола.
ОТВЕТЫ
I. Планиметрические задачи на ЕГЭ
ЧАСТЬ В
1. 24. 2. 128. 3. 24. 6. 5. 8. 64. 10. 80. 11. 5. 12. 14. 13. 3. 14. 3. 15. 36. 16. 3. 17. 6. 18. 54.
19. 21. 20.10. 21. 24. 22. 270. 23. 32. 24. 12. 27. 1. 29. 10. 34. 24. 37. 9. 38. 12. 39. 64. 40. 8.
II. Тематический сборник
1.1. Треугольник
1.1.1. 30° или 150°. 1.1.2. 16. 1.1.3. 24. 1.1.4. 8. 1.1.5. 48. 1.1.6. 2. 1.1.7. 20.
1.1.8. ∠А = 180° - arccos
8
63 - arccos
8
7 , ∠B = arccos
8
7 , ∠С = arccos
8
63 .
1.1.9. 8 или 18. 1.1.10. или 1.1.11. 2,4; 21,6. 1.1.12. АВ : ВС = 1 : 2. 1.1.13. 4,8; .
1.1.14. ; . 1.1.15. ; .
1.2.Медианы треугольника
1.2.1. 11 . 1.2.2. 14. 1.2.3. 3. 1.2.4. 21. 1.2.5. 30°или 150°. 1.2.6. 0,1. 1.2.7. 3 2 . 1.2.8.
3
58
; 3
16 .
1.2.9. 20. 1.2.10. 80 или 16.
1.3. Биссектрисы треугольника
1.3.1. 270. 1.3.2. 32. 1.3.3. 4, 5. 1.3.4. 8,5 1.3.5.
b)(2ab)2(a
b)Sb(3a
+⋅+
+ 1.3.6.
2
2cosα
a 1.3.7. 44. 1.3.8. 25 3 .
1.3.9.
3
2 . 1.3.10. 36°, 36°, 108° или 60°, 60°, 60° . 1.3.11. 150 или 30.
1.4. Высоты треугольника
1.4.1. 60°; 120°. 1.4.2. 45° или 135°. 1.4.3. 45°, 75°, 60° или 135°, 15°, 30° или 120°, 15°, 45° или
105°, 30°, 45°. 1.4.4. 2abkba 22 −+ или 2abkba 22 ++ . 1.4.5.
2sinα Объяснение: