1. Периметр рівнобедреного трикутника дорівнює 105 см, а бічна сторона відноситься до основи як 7:3. Знайдіть сторони трикутника.
2. Відрізки АВ і СD перетинаються в точці 0, причому АО = D0, CO = Во
(рис. 1)
Знайдіть периметр трикутника АОС, якщо AC = 4 см, CD = 8 см.
Одну вершину C мы найдем сразу - это точка пересечения наших прямых
x+y-4=0
2x+y-1=0
x=-3 y=7
Вторая и третья вершина будут иметь координаты
A(a, 4-a) и B(b, 1-2b)
Тогда середины сторон AB BC AC будут
((a+b)/2,(5-a-2b)/2)
((b-3)/2, (8-2b)/2)
((a-3)/2, (11-a)/2)
Далее медианы своей точкой пересечения делятся 2 к одному. А точка эта (0,0)
То есть если вершина имеет координаты (х, у) , то основание медианы из этой вершины (-x/2,-y/2)
Тогда для С имеем:
a+b=3
5-a-2b=-7
b=9 a=-6
То есть B(9,-17)
A(-6,10)
Остается написать уравнение прямой AB - это уже просто:
9x+5y+4=0
Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) .
Запишем неравенство:
- всё это конечно углы.
Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N
Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP)
∠P>∠N
Значит против ∠Р лежит сторона, большая от стороны против угла N
И меньшая стороне NP.
В итоге получаем:
NP>ON>OP
Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.