Давайте вспомним определение косинуса в прямоугольном треугольнике.Косинус в прямоугольником треугольнике — это отношение прилежащего катета (маленькой стороны рядом с углом) к гипотенузе (самой длинной стороне прямоугольного треугольника).Рассмотрим треугольник AHC. Известно, что cosA=0.8cosA=0.8Но что такое "косинус угла А" по определению? Это отношение прилежащей стороны к гипотенузе. То есть: cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2
Т к у ромба все стороны раны, и известен периметр, найдем длины сторон: АВ=ВС=СК=АК=16/4=4см. Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)
cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2
ответ: длина отрезка AH равна 3,2 см.
Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)