Пусть АВСД четырёхугольник, вписанный в окружность,
<A : < B : < C = 2 : 6 : 7. Примем часть за х. То есть
<A = 2 * х; < B = 6 * х; < C = 7 * х.
Как известно в четырёхугольнике, вписанном в окружность сумма противоположных углов равна 180°, то есть <A + < C = 180°, <B + <Д = 180°.
<A + < C = 2 * х + 7 * х = 9 * х = 180°. х = 180°/9 = 20°.
<A = 2 * х = 2 * 20° = 40°;
< B = 6 * х = 6 * 20° = 120°;
< C = 7 * х = 7 * 20° = 140°;
< Д = 180° - < В = 180° - 120° = 60°.
ответ: Ѕ=h₁•h₂/sinα
Объяснение: На приложенном рисунке - АВСD- параллелограмм; ВК и ВМ - его высоты.
Из условия ВК=h₁; BM=h₂, угол КВМ=α.
По одной из формул площадь параллелограмма равна произведению соседних сторон на синус угла между ними.
S(ABCD)=AB•АD•sin(BAD).
Высоты параллелограмма перпендикулярны двум его противоположным сторонам.⇒
Треугольники АВК и ВСМ - прямоугольные.
Сумма острых углов прямоугольного треугольника равна 90°, поэтому в ⊿ АВК ∠АВК=90°-∠ ВАК. Но ∠АВМ =90°, ⇒
∠АВК =90°-угол α ⇒
90°-угол ВАК=90°-угол α. ⇒
∠ ВАК =α.
Противоположные углы параллелограмма равны.
Из ⊿ АВК h₁=AB•sinα ⇒ AB=h₁:sinα
Из⊿ СВМ h₂=BC•sinα ⇒ BC=h₂:sinα
Ѕ(ABCD)=AB•BC•sinα=(h₁:sinα)•(h₂:sinα)•sinα=h₁•h₂/sinα.
Пусть АВСД четырёхугольник, вписанный в окружность,
<A : < B : < C = 2 : 6 : 7. Примем часть за х. То есть
<A = 2 * х; < B = 6 * х; < C = 7 * х.
Как известно в четырёхугольнике, вписанном в окружность сумма противоположных углов равна 180°, то есть <A + < C = 180°, <B + <Д = 180°.
<A + < C = 2 * х + 7 * х = 9 * х = 180°. х = 180°/9 = 20°.
<A = 2 * х = 2 * 20° = 40°;
< B = 6 * х = 6 * 20° = 120°;
< C = 7 * х = 7 * 20° = 140°;
< Д = 180° - < В = 180° - 120° = 60°.
ответ: Ѕ=h₁•h₂/sinα
Объяснение: На приложенном рисунке - АВСD- параллелограмм; ВК и ВМ - его высоты.
Из условия ВК=h₁; BM=h₂, угол КВМ=α.
По одной из формул площадь параллелограмма равна произведению соседних сторон на синус угла между ними.
S(ABCD)=AB•АD•sin(BAD).
Высоты параллелограмма перпендикулярны двум его противоположным сторонам.⇒
Треугольники АВК и ВСМ - прямоугольные.
Сумма острых углов прямоугольного треугольника равна 90°, поэтому в ⊿ АВК ∠АВК=90°-∠ ВАК. Но ∠АВМ =90°, ⇒
∠АВК =90°-угол α ⇒
90°-угол ВАК=90°-угол α. ⇒
∠ ВАК =α.
Противоположные углы параллелограмма равны.
Из ⊿ АВК h₁=AB•sinα ⇒ AB=h₁:sinα
Из⊿ СВМ h₂=BC•sinα ⇒ BC=h₂:sinα
Ѕ(ABCD)=AB•BC•sinα=(h₁:sinα)•(h₂:sinα)•sinα=h₁•h₂/sinα.