1. Побудувати трикутник А'''В'''С''' , одержаний в результаті парплельного перенесення трикутника АВС на вектор (-4;3) 2. Побудувати трикутник А'В'С' , симетричний трикутнику АВС відносно прямої , яка проходить через точки
Определение: Вектора a и b называются равными, если они имеют 1) одинаковую длину, 2) лежат на параллельных прямых или на одной прямой, и 3) направлены в одном направлении. ...
То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины
а) Два вектора называются равными, если их координаты соответственно равны.
ДА
в) Два вектора называются равными, если их абсолютные величины равны.
НЕТ (недостаточный признак)
с) Два вектора называются равными, если они коллинеарны.
НЕТ (недостаточный признак)
d) Координаты вектора – это координаты начала вектора.
НЕТ
Чтобы найти координаты вектора , если заданы координаты его начала и конца, необходимо от координат конца отнять соответствующие координаты начала.
e) Вектор – это отрезок.
Недостаточное определение
Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление
I) Скалярное произведение векторов – это вектор.
НЕТ
Скалярным произведением двух векторов называется ЧИСЛО, равное произведению длин этих векторов на косинус угла между ними:
f) Произведение вектора на число – это число.
НЕТ
Произведение ненулевого вектора на число - это вектор, коллинеарный данному (сонаправленный данному, если число положительное, имеющий противоположное направление, если число отрицательное), а его модуль равен модулю данного вектора, умноженному на модуль числа.
g) При скалярного произведения можно определить угол между векторами
ДА
Косинус угла между векторами равен скалярному произведению этих векторов, деленному на произведение их длин
Т.к. треугольник равнобедренный, то по определению имеет 2 равные боковые стороны.
Случай 1. Пусть основание меньше боковой стороны, тогда основание = x, а боковые стороны x + 12. Периметр - это сумма всех сторон, так что составим уравнение:
x + (x+12) + (x+12) = 76
3x + 24 = 76
3x = 76 -24
3x = 52
x = 52: 3 = - основание, значит боковая сторона = x + 12 =
Случай 2. Пусть основание больше боковой стороны, тогда основание = x, а боковые стороны x - 12.
Определение: Вектора a и b называются равными, если они имеют 1) одинаковую длину, 2) лежат на параллельных прямых или на одной прямой, и 3) направлены в одном направлении. ...
То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины
а) Два вектора называются равными, если их координаты соответственно равны.
ДА
в) Два вектора называются равными, если их абсолютные величины равны.
НЕТ (недостаточный признак)
с) Два вектора называются равными, если они коллинеарны.
НЕТ (недостаточный признак)
d) Координаты вектора – это координаты начала вектора.
НЕТ
Чтобы найти координаты вектора , если заданы координаты его начала и конца, необходимо от координат конца отнять соответствующие координаты начала.
e) Вектор – это отрезок.
Недостаточное определение
Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление
I) Скалярное произведение векторов – это вектор.
НЕТ
Скалярным произведением двух векторов называется ЧИСЛО, равное произведению длин этих векторов на косинус угла между ними:
f) Произведение вектора на число – это число.
НЕТ
Произведение ненулевого вектора на число - это вектор, коллинеарный данному (сонаправленный данному, если число положительное, имеющий противоположное направление, если число отрицательное), а его модуль равен модулю данного вектора, умноженному на модуль числа.
g) При скалярного произведения можно определить угол между векторами
ДА
Косинус угла между векторами равен скалярному произведению этих векторов, деленному на произведение их длин
Два возможных случая:
1)
2)
Объяснение:
Т.к. треугольник равнобедренный, то по определению имеет 2 равные боковые стороны.
Случай 1. Пусть основание меньше боковой стороны, тогда основание = x, а боковые стороны x + 12. Периметр - это сумма всех сторон, так что составим уравнение:
x + (x+12) + (x+12) = 76
3x + 24 = 76
3x = 76 -24
3x = 52
x = 52: 3 = - основание, значит боковая сторона = x + 12 =
Случай 2. Пусть основание больше боковой стороны, тогда основание = x, а боковые стороны x - 12.
Составляем уравнение
x + (x-12) + (x-12) = 76
3x - 24 = 76
3x = 76 + 24
3x = 100
x = 100:3 = , ⇒ боковая сторона = x - 12 =