1. кат.1 = 9 По теореме Пифагора: кат. 2 =40 (Кат.1)^2 + (Кат.2)^2 = (Гип.)^2 гип.-? 9^2 + 40^2 = (Гип.)^2 81 + 1600 = (Гип.)^2 Гип. = √1681 Гип. = 41 2. 25^2 - 15^2 = kat^2 625 - 225 = kat^2 kat = √400 kat = 20 1. Треугольник равносторонний т.к. АВ = ВС = АС Высота в равностороннем треугольнике является медианой => Cторона на которую падает высота делится на 2 равных отрезка: , тогда по теореме Пифагора: CH== 23 * 3 = 69 2. Рассмотрим треугольник СНА: Т. к. угол С = 30 гр., то АН - катет, лежащий против угла в 30 градусов, значит, он равен половине гипотенузы АС АН =1/2 АС => АН = 1/2 * 22 = 11 см
кат. 2 =40 (Кат.1)^2 + (Кат.2)^2 = (Гип.)^2
гип.-? 9^2 + 40^2 = (Гип.)^2
81 + 1600 = (Гип.)^2
Гип. = √1681
Гип. = 41
2. 25^2 - 15^2 = kat^2
625 - 225 = kat^2
kat = √400
kat = 20
1. Треугольник равносторонний т.к. АВ = ВС = АС
Высота в равностороннем треугольнике является медианой =>
Cторона на которую падает высота делится на 2 равных отрезка:
,
тогда по теореме Пифагора:
CH== 23 * 3 = 69
2. Рассмотрим треугольник СНА:
Т. к. угол С = 30 гр.,
то АН - катет, лежащий против угла в 30 градусов, значит, он равен половине гипотенузы АС
АН =1/2 АС =>
АН = 1/2 * 22 = 11 см
Значит, РС+AD=2·15
РС+25=30
РС=5
ВС=ВР+РС
25=ВР+5
ВР=25-5=20
∠PAD=∠BPA - внутренние накрест лежащие при параллельных ВС и AD и секущей АР.
∠ВАР=∠РАD - биссектриса АР делит угол А пополам.
Значит ∠BPA =∠ВАР и треугольник АВР - равнобедренный АВ=ВР=20
Противоположные стороны параллелограмма равны CD=AB=20
Из треугольника АСD по теореме косинусов:
АС²=AD²+DC²-2·AD·DC·cos ∠D
(5√46)²=25²+20²-2·25·20·cos ∠D
1150=625+400-1000·cos ∠D
cos ∠D =-0,125
Противоположные углы параллелограмма равны
∠В=∠D
Из треугольника АBP по теореме косинусов:
АP²=AB²+BP²-2·AB·BP·cos ∠B
АP²=20²+20²-2·20·20·(-0,125)
АP²=400+400+100
АP²=900
AP=30
Р( трапеции АРСD)= АР+РС+СD+AD=30+5+20+25=80
ответ. Р=80