1. Подобны ли равносторонние треугольники, если сторона одного из них равна 6 см?
2. Подобны ли треугольники и 111, если: = 9, = 15, =
21, 11 = 13.5,11 = 22.5,11 = 31.5? ответ обоснуйте.
3. На одной из сторон угла отложены отрезки = 20 см, = 64 см.
На другой стороне этого же угла отложены отрезки = 32 см и =
40 см. Подобны ли треугольники и ? ответ обоснуйте.
4. Треугольники и 111 подобны. Сторона АВ = 6, ВС=8, А1В1=18.
Найти сторону В1С1.
1) Угол между биссектрисами двух углов треугольника равен 90° плюс половина третьего угла треугольника.
2) Биссектриса треугольника пересекает его описанную окружность в точке, лежащей на серединном перпендикуляре к той стороне, к которой проведена биссектриса.
3) Вписанный в окружность угол в 60° опирается на хорду равную R√3.
Пусть E и F - точки пересечения биссектрис треугольников ABD и АСD соответственно. Тогда из этих треугольников в силу 1) получаем ∠AED=∠AFD=90°/2+90°=135°. Значит AEFD - вписанный 4-угольник и радиус окружности описанной вокруг него равен AD/(2sin∠AED))=2/(2/√2)=√2=EF. Центр О этой окружности лежит на серединном перпендикуляре к AD и OH=1 т.к. HD=1 и OD=√2, где H - середина AD. Кроме того, треугольник OEF - равносторонний. С другой стороны, в силу факта 2) прямые BE и CF также пересекаются в точке О, т.к. прямоугольные треугольники ABD и ACD вписаны в окружность с центром H и радиусом HD=1. Таким образом, угол ∠BOC=∠EOF=60°, а значит по свойству 3) BC=√3.
Смотрим рисунок, данный в приложении.
Диагонали выпуклого четырехугольника делят его на треугольники. Стороны четырехугольника, которые соединяют середины сторон ABCD,являются средними линиями таких треугольников, поэтому противоположные стороны такого вписанного четырехугольника равны и параллельны.⇒
Четырехугольник КМНР - параллелограмм.
Отрезки, соединяющие середины сторон исходного четырехугольника диагонали получившегося параллелограмма.
Если диагонали параллелограмма равны, этот параллелограмм– прямоугольник. Противоположные стороны КМНР равны половине диагоналей АВСD.
Примем длину ВD= а. Тогда АС=3а/4
КР=ВD:2=а/2
КМ=АС:2=3а/8
По условию диагонали прямоугольника равны 15.
Вычислим по т.Пифагора стороны КМНР.
МР²=КМ²+КР²
15²=(3а/8)²+(а/2)²
225=9а²/64+а²/4 ⇒
25а²/64=225 откуда
а²=576
а=24
КР=МН=24:2=12
КМ=РН=24:8•3=9