1. построить следы плоскости a,b,c 2. определить расстояние от точки b до плоскости треугольника замены плоскостей проекций определить расстояние от точки в до плоскости треугольника acd 4. построить натуральную величину треугольника abd ax-85; ay-165; az-105; bx-15; by-30; bz-50; cx-50; cy-0; cz-5; dx-140; dy-60; dz-104.
При пересечении двух параллельных прямых третьей (не под прямым углом) образуются 8 углов, четыре из которых имеют одну величину и четыре - другую:
На рисунке видны такие углы 1 и 3; 2 и 4, а так же 5 и 7; 6 и 8. Очевидно, что все эти пары представляют собой равные углы, так как являются вертикальными. Таким образом, мы имеем четыре бо'льших угла: 1, 3, 5, 7 и четыре меньших: 2, 4, 6, 8. Разность между бо'льшим и меньшим углом, по условию, равна 44°. Сумма большего и меньшего равна 180°. Тогда:
{ ∠1 - ∠2 = 44°
{ ∠1 + ∠2 = 180° - Складываем оба уравнения:
2 *∠1 = 224° => ∠1 = 112°; ∠2 = 180 - 112 = 68°
Таким образом: ∠1 = ∠3 = ∠5 = ∠7 = 112°
∠2 = ∠4 = ∠6 = ∠8 = 68°
S=(AD+BC)* 1/2*ВH.
Рассмотрим треугольник АВН.
угол А=60 АВ=16, угол ВНА=90. Значит треугольник АВН-прямоугольный
угол А+угол АВН=90 градусов( свойство острых углов прямоугльного треугольника)
угол АВН=90-60=30 градусов
АН=1/2АВ(Свойство катета лежавшего напротив угла в 30 градусов)
АН=8
Проведем высоту СN
(Там все точно такое же как и в первом треугольнике )
DN=8
Найдем НN
HN=AD-(BH+HN)
HN=4
Рассмотрим прямоугольник HBCN
HN=BC=4
Найдем высоту BH
AB=BH+AH каждая сторона в квадрате(теорема Пифагора)
BH=AB-AH( каждая сторона в квадрате
BH=256-64=192
BH= корень из92=8кореньиз 3
S=(20+4)*1/28* 8 корень из 3=96кореньиз 3