1. Постройте диаграмму рассеивания по данным таблицы на миллиметровой
бумаге.
2. Имеется ли связь между данными? Если да, охарактеризуйте ее (положительная она или отрицательная).
3. Что вызывает изменчивость атмосферного давления – приведите один-два
фактора, объясняющих, почему если связь между высотой и давлением существует, то она не очень сильная.
4. Как по вашему мнению, есть ли основания считать, что эта связь хотя бы
приближенно описывается линейной функцией?
5. Найдите координаты центра облака данных и проведите ось диаграммы.
6. Напишите уравнение оси диаграммы.
7. Согласно полученному уравнению, какое атмосферное давление можно
было бы ждать 31 октября в месте, которое находится на высоте 400 метров
над уровнем моря?
в файле таблица
Если в равнобедренной трапеции провести высоты ВН и СК, то получим НВСК - прямоугольник (ВС║КН, так как основания трапеции параллельны, ВН║СК как перпендикуляры к одной прямой), тогда
ВС = КН и ВН = СК.
ΔАВН = ΔDCK по гипотенузе и катету (АВ = CD, так как трапеция равнобедренная, ВН = СК), тогда
АН = DK = (AD - KH)/2 = (AD - BC)/2.
Площадь трапеции:
Sabcd = (AD + BC)/2 · BH
Воспользуемся этими выводами для решения задач:
а) AH = DK = (17 - 11)/2 = 3 см
ΔАВН прямоугольный с гипотенузой, равной 5 см и катетом 3 см, значит он египетский и
ВН = 4 см.
Sabcd = (17 + 11)/2 · 4 = 28/2 · 4 = 14 · 4 = 56 см²
б) AH = DK = (8 - 2)/2 = 3 см
ΔABH: ∠AHB = 90°, ∠BAH = 60°, ⇒ ∠ABH = 30°.
AB = 2AH = 6 см по свойству катета, лежащего напротив угла в 30°,
по теореме Пифагора:
BH = √(AB² - AH²) = √(36 - 9) = √27 = 3√3 см
Sabcd = (8 + 2)/2 · 3√3 = 15√3 см²
Треугольник ABC: AB=BC=25, AC=14. Сначала найдем медиану, проведенную к основанию, назовем ее BK. В равнобедренном треугольнике высота, медина, биссектриса, опущенные на основание совпадают. Значит, BK разделила АС а равные части под прямым углом: AC=AK + KC=7+7=14. Теперь рассмотрим прямоугольный треугольник BKC, где угол К=90, ВС=25, КС=7, ВК-?. ТОгда по теореме Пифагора: ВК=25^2-7^2=24. Одна медиана найдена. Медианы АN=CM, их найдем по формуле нахождения медианы. Просто подставишь и получишь ответ.