1. Постройте окружность данного радиуса, проходящую через данную точку, с центром на данной прямой. Опишите построения.
2. На стороне AB треугольника ABC постройте точку равноудалённую
от вершин B и C. Опишите построения.
3. С циркуля и линейки разделите данный отрезок на четыре
равные части. Опишите построения.
4. Даны прямая а и точка А на ней. Опишите верную
последовательность действий для построения прямой, проходящей
через точку А и перпендикулярную к прямой а
Неважно, какой из углов будет обозначен 1. По теоремам об углах, образованных двумя параллельными прямыми и секущей:
1. Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.
2. Если две параллельные прямые пересечены секущей, то соответственные углы равны.
3. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Следовательно, образуются 4 угла одной величины, 4 угла другой величины, и их сумма равна величине развернутого угла. (На рисунке приложения отмечены равные углы) ∠1+∠2=180° По условию ∠1 меньше ∠2 на 40° ⇒ ∠2=∠1+40°; ⇒ ∠1+(∠1+40°)=180° откуда ∠1=70°
Примечание: Если один из углов, образованных параллельными прямыми и секущей равен 90°, то все остальные углы равны ему.
Неважно, какой из углов будет обозначен 1. По теоремам об углах, образованных двумя параллельными прямыми и секущей:
1. Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.
2. Если две параллельные прямые пересечены секущей, то соответственные углы равны.
3. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Следовательно, образуются 4 угла одной величины, 4 угла другой величины, и их сумма равна величине развернутого угла. (На рисунке приложения отмечены равные углы) ∠1+∠2=180° По условию ∠1 меньше ∠2 на 40° ⇒ ∠2=∠1+40°; ⇒ ∠1+(∠1+40°)=180° откуда ∠1=70°
Примечание: Если один из углов, образованных параллельными прямыми и секущей равен 90°, то все остальные углы равны ему.