Есть пирамида АВСД, гда АВС - основание, ДО - высота пирамиды. Из вершины Д к стороне АВ проведем апофему ДЕ.
В равностороннем треугольнике АВС все высоты пересекаются в точке О. Рассмотрим прямоугольный треугольник АЕО: угол ОАЕ=60/2=30. ОЕ - катет, лежащий против угла 30 градусов, примем его за х, значит ОА=2ОЕ=2х
АЕ^2=ОA^2-ОE^2=(2х)^2-х^2=3х^2
но АЕ=АВ/2=1 значит 3х^2=1, х=ОЕ=1/корень из 3.
ОА=2х=2/корень из 3.
СЕ=ОС+ОЕ=ОА+ОЕ=3/корень из 3
Из прямоугольного треугольника ОДЕ: угол ОДЕ=180-ДОЕ-ОЕД=180-90-60=30.
ОЕ - катет, лежащий против угла 30 градусов. Значит ДЕ=2ОЕ=2/корень из 3
ОД^2=ДЕ^2-ОE^2=(2/корень из 3)^2-(1/корень из 3)^2 =1, ОД=1
S(ABCD) --?
∠DAC =∠ACB ( как накрест лежащие углы ) ⇒∠BAС=∠ACB .те. треугольник
ABС равнобедренный (AB=BС =15 см ) . По известным сторонам можно определить площадь трапеции .
Проведем BE ⊥ AD . AE = (AD - BC)/2 =( 33 -15)/2 =9 (см ) .
Из прямоугольного ΔABE получаем BE =16 см * * * (3*3 ; 3*4 ;3*5 * * *
S(ABCD) = ((AD+BC)/2)*BE =((33+15)/2) *16 =384 (см² ).
* * * * * * * второй
Можно проведем BE || CD ;E ∈ [AD] .Треугольник ABE известен по трем сторонам: BE =CD ;CD; ED=AD - BC. S(ABCD)/S(ABE) =(AD+BC)/(AD-BC).
S(ABCD)S(ABE) = S(ABE) *(AD+BC)/(AD-BC) .
.
Есть пирамида АВСД, гда АВС - основание, ДО - высота пирамиды. Из вершины Д к стороне АВ проведем апофему ДЕ.
В равностороннем треугольнике АВС все высоты пересекаются в точке О. Рассмотрим прямоугольный треугольник АЕО: угол ОАЕ=60/2=30. ОЕ - катет, лежащий против угла 30 градусов, примем его за х, значит ОА=2ОЕ=2х
АЕ^2=ОA^2-ОE^2=(2х)^2-х^2=3х^2
но АЕ=АВ/2=1
значит 3х^2=1, х=ОЕ=1/корень из 3.
ОА=2х=2/корень из 3.
СЕ=ОС+ОЕ=ОА+ОЕ=3/корень из 3
Из прямоугольного треугольника ОДЕ: угол ОДЕ=180-ДОЕ-ОЕД=180-90-60=30.
ОЕ - катет, лежащий против угла 30 градусов. Значит ДЕ=2ОЕ=2/корень из 3
ОД^2=ДЕ^2-ОE^2=(2/корень из 3)^2-(1/корень из 3)^2 =1, ОД=1
S=1/2*АВ*СЕ=1/2*2*3/корень из 3=3/корень из 3
V=1/3*S*h=1/3* 3/корень из 3*1=1/корень из 3