1) При пересечении двух параллельных прямых секущий, один из получившихся углов равен 34°. Найдите остальные углы. 2) Докажите, что AB=CD, если BC AD и AB CD на рисунке 1.
Вот смотри, если же все грани параллелепипеда ABCDA1B1C1D1 - квадраты, то это куб.
Плоскости DA1 B1 и MKP параллельны по условию твоей задачи, если эти плоскости параллельны, то они пересекают плоскость ADD1 по параллельным прямым MК и DA1 и есть плоскость CBB1 по параллельным прямым ЕР и CB1.
MKРЕ -как раз и искомое сечение. КМ- гипотенуза равнобедренного прямоугольного треугольника с катетом а/2, КМ=а√2 /2. КР=а.
Тогда периметр Р=2*(а√2 /2+а)=а√2+2а=а(√2+2).
Я думаю, числовые значения из твой задачи можно подставить самостоятельно :в
Из точки А к плоскости проведены наклонно АВ и АС и перпендикуляр АО. Найдите ВО и ОС, если ВО+ОС=3 см, АВ=3 см, АС=√6 Задачи подобного рода встречаются часто, и решаются, как правило, с т. Пифагора. Пусть ВО=х, тогда ОС=3-х. По теореме Пифагора выразим квадрат высоты АО ( т.к. она перпендикулярна плоскости, отсюда перпендикулярна и любой прямой на плоскости. проходящей через О) треугольника ВАС. АО²=АВ²-ВО² АО²=АС²-ОС² Приравняем оба уравнения: АВ²-ВО²=АС²-ОС² 9-х²=6-9+6х-х² 6х=12 х=2 3-х=3-2=1 ВО=2см, ОС=1см
Плоскости DA1 B1 и MKP параллельны по условию твоей задачи, если эти плоскости параллельны, то они пересекают плоскость ADD1 по параллельным прямым MК и DA1 и есть плоскость CBB1 по параллельным прямым ЕР и CB1.
MKРЕ -как раз и искомое сечение. КМ- гипотенуза равнобедренного прямоугольного треугольника с катетом а/2, КМ=а√2 /2. КР=а.
Тогда периметр Р=2*(а√2 /2+а)=а√2+2а=а(√2+2).
Я думаю, числовые значения из твой задачи можно подставить самостоятельно :в
Задачи подобного рода встречаются часто, и решаются, как правило, с т. Пифагора.
Пусть ВО=х, тогда ОС=3-х.
По теореме Пифагора выразим квадрат высоты АО ( т.к. она перпендикулярна плоскости, отсюда перпендикулярна и любой прямой на плоскости. проходящей через О) треугольника ВАС.
АО²=АВ²-ВО²
АО²=АС²-ОС²
Приравняем оба уравнения:
АВ²-ВО²=АС²-ОС²
9-х²=6-9+6х-х²
6х=12
х=2
3-х=3-2=1
ВО=2см, ОС=1см