1. При якому значенні x відстань між точками C (3; 2) і D (x; -1) дорівнює 5? 2. На осі абсцис знайдіть точку, яка рівновіддалена від точок A (-1; -1) і B (2; 4).
Если катеты одного прямоугольного треугольника соответственно равны катетам другого,то такие ттреугольники равны.
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого,то такие треугольники равны.
Если гипотенуза и острый угол одного прямоугольного треугольника соответсвенно равны гипотенузе и острому углу другого,то такие треугольники равны.
Если гипотенуза и катет одного прямоугольного треугольника соответсвенно равны гипотенузе и катету другого, то такие треугольники равны.
перед решением нужно ещё и довольно громоздкое доказательство
площадь боковой поверхности равна произведению высоты боковой грани на полупериметр основания. Но нужно доказать, что высоты у всех граней равны. Кроме того нужно доказать, что высота пирамиды проходит через центр вписанной окружности.
Здесь, по сути три задачи.
Площадь основания по формуле Герона = 48 кв.см радиус вписанной окружности = площадь/п.периметр=48/16=3см высота бок.грани = радиус/cos45=3√2 площ.боковая=3√2 * 16=48√2 ну и для полной добавить найденную площадь основания. Для полного понимания, если вдруг захочется разобраться, читайте Атанасяна 2001, Геометрия-10, задачи 246-248
Если катеты одного прямоугольного треугольника соответственно равны катетам другого,то такие ттреугольники равны.
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого,то такие треугольники равны.
Если гипотенуза и острый угол одного прямоугольного треугольника соответсвенно равны гипотенузе и острому углу другого,то такие треугольники равны.
Если гипотенуза и катет одного прямоугольного треугольника соответсвенно равны гипотенузе и катету другого, то такие треугольники равны.
перед решением нужно ещё и довольно громоздкое доказательство
площадь боковой поверхности равна произведению высоты боковой грани на полупериметр основания. Но нужно доказать, что высоты у всех граней равны.
Кроме того нужно доказать, что высота пирамиды проходит через центр вписанной окружности.
Здесь, по сути три задачи.
Площадь основания по формуле Герона = 48 кв.см
радиус вписанной окружности = площадь/п.периметр=48/16=3см
высота бок.грани = радиус/cos45=3√2
площ.боковая=3√2 * 16=48√2
ну и для полной добавить найденную площадь основания.
Для полного понимания, если вдруг захочется разобраться, читайте Атанасяна 2001, Геометрия-10, задачи 246-248