1. Проанализируйте соседнюю климаграмму по алгоритму и определите тип климата: а) средняя температура самого тёплого месяца; б) средняя температура самого холодного месяца; В) годовая амплитуда температур; г) тип режима осадков; д) среднегодовая температура воздуха; е) годовое количество осадков; ж) название типа климата.
Приближается Новый год. 2012 год по восточному календарю — год дракона. В связи с этим моя давняя хорошая подруга и однокурсница преложила написать об этом фрактале — кривой дракона.
Кривая дракона — это кривая без самопересечений, которая определяется рекурсивно. Описать эту кривую можно, задавая поворот налево цифрой

, а поворот направо — цифрой

. Важно, что все повороты совершаются на один и тот же угол! Таким образом, задавая значение

или

на каждом шаге, мы можем задать кривую.
Порядком кривой дракона называется количество звеньев получающейся ломаной. Кривая первого порядка определяется просто как

. Для кривых более высоких порядков справа приписываем
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°Кривая дракона — это кривая без самопересечений, которая определяется рекурсивно. Описать эту кривую можно, задавая поворот налево цифрой

, а поворот направо — цифрой

. Важно, что все повороты совершаются на один и тот же угол! Таким образом, задавая значение

или

на каждом шаге, мы можем задать кривую.
Порядком кривой дракона называется количество звеньев получающейся ломаной. Кривая первого порядка определяется просто как

. Для кривых более высоких порядков справа приписываем