1) прочитать и сделать конспект тем "пропорциональные отрезки" и "определение подобных треугольников" стр. 137-138.
2) выполните
1) 4 примера пропорциональных отрезков.
например: (1пример) ав=18см и см= 6см
пропорциональны отрезкам
нт=30см и хк=10см
потому что 18: 6=30: 10
(2пример) отрезки длиной 2см и 5см
пропорциональны отрезкам 4дм и 10дм
потому что 2: 5=4: 10.
2) постройте подобные:
а) прямоугольные треугольники;
б) равнобедренные треугольники;
в) прямоугольники.
(например если вы рисуете треугольник со сторонами 3, 4, 5, то следующий треугольник должен быть со сторонами 6, 8, 10 (все увеличены в 2 раза) или 1,5; 2; 2,5 (все уменьшены в 2 раза))
Высота этого треугольника, опущенная на гипотенузу из вершины прямого угла, равна 9:6·2= 3 см
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Найдем эти отрезки, обозначив один из них х, другой 6-х:
9=х(6-х)
9=6х-х²
3²= x *(6-x)
х²-6х+9=0
Решив это квадратное уравнение, найдем два одинаковых корня х=3
Следовательно, отрезки, на которые высота делит гипотенузу, равны, и треугольник - равнобедренный.
Высота равна 3, половина гипотенузы=3.
Из прямоугольного треугольника с катетами 3 и 3 найдем боковую сторону ( катет исходного треугольника)
х²=3²+3²=18
х= √18=3√2
Катеты равны 3√2
Проверка:
Площадь найдем половиной произведения катетов:
S= (3√2)·(3√2):2=9·2:2=9 cм²
треугольники AKВ и DKC равны по двум сторонам и углу между ними
(BA=CD --- т.к. квадрат, АК=KD --- т.к. AKD равнобедренный,
угол ВАК=CDK = 90-15 = 75 градусов)))
=> BK = KC
понятно, что нужно поискать треугольник с углами 30 и 60 градусов
(желательно прямоугольный...)))
если продолжить сторону KD до пересечения с диагональю АС
(точку пересечения обозначим Т) --- получится треугольник АТD
с углами 15, 45, 120... (диагонали квадрата взаимно перпендикулярны и являются биссектрисами его углов)))
соединим точки В и Т прямой линией...
и рассмотрим получившиеся треугольники
угол ТАК=30=ТКА
=> BT _|_ AK
и в треугольнике АТК эта прямая --- медиана,
значит и для АВК эта прямая ВТ и медиана и высота,
т.е. АВК --- равнобедренный и АВ=ВК=а
(((здесь самое тонкое место следующий вывод:
из доказанной равнобедренности меньшего треугольника АТК
сделать вывод о равнобедренности бОльшего треугольника АВК...
обычно рассуждения следуют в обратном порядке...
но здесь прямая ВТ по построению содержит медиану треугольника АТК --- вторую точку не обозначила, пусть ТХ будет...
это одна прямая линия...)))