1. Прямая а лежит в плоскости α и пересекает плоскость β. Каково взаимное расположение плоскостей α и β?
а) определить нельзя;
б) они совпадают;
в) имеют только одну общую точку;
г) не пересекаются;
д) пересекаются по некоторой прямой.
2. Точки A,B,C не лежат на одной прямой. M € AB; K € AC; X € MK. Выберите верное утверждение.
а) X € AB; б) X € AC; в) X € ABC; г) точки Х и М совпадают; д) точки Х и К совпадают.
Объем цилиндра равен произведению площади его основания на высоту.
V=SH
Все нужные измерения найдем с т. Пифагора.
Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ
с катетами АО=ОВ=2 см
АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно,
радиус основания цилиндра (2√2):2=√2
СО- половина высоты цилиндра СН и равна радиусу основания, т.к.
ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, =>
СО= АС=√2.
Высота цилиндра
СН =СО*2=2√2
V=SH=π(√2)²*2√2=4π√2 см³
Рассмотрим куб ABCDA1B1C1D1. В нём ребро А1В1 параллельно ребру АВ. Ребро АВ лежит в плоскости АВС, тогда ребро А1В1 параллельно плоскости АВС. Аналогично, ребро В1С1 параллельно ребру ВС, лежащему в плоскости АВС, тогда оно параллельно плоскости АВС.
Теперь обозначим плоскость АВС за α, прямую, содержащую ребро А1В1 за а, прямую, содержащую ребро В1С1 за b. Тогда прямые a и b параллельны α, но из этого не следует, что a параллельна b - в нашем случае эти прямые имеют общую точку B1.
ответ: не следует.