1.- прямокутника ABCD (рис. 3) 2.- ромба CBDF (рис. 4) Знайти: 1) відстань між точками A і B; 2) довжину відрізка MD; 3) відстань між точками A і C; 4) довжину відрізка BD; 5) відстань між точками M і C; 6) площу трикутника MAC.
В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
1. 60
2. АВ = 70°, АС = ВС = 145°.
Объяснение:
1.
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
2 Задача
Если О - центр окружности, то угол АОВ - центральный.
Центральный угол равен дуге, на которую опирается. Отсюда, дуга АВ = 70°.
Угол САВ = углу СВА, тогда дуга АС = дуге ВС = (360° - 70°) / 2 = 290° / 2 = 145°.
В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
S AMD=[AC•CD:2]:2=4•3:4=3 см²