Радиус описанного круга=abc/4S Нужно найти основу. Проведем высоту ВК из вершины В к основе АС, которая в равнобедренном треугольнике и медиана и биссектриса. тогда угол АВК=α/2. Используем тригонометрические соотношения. Синус=противоположный катет/гипотенуза. sin α/2=AK/a ⇒AK=sin α/2*a. Так как АК еще и медиана, то АК=КС, АС=2АК=2 sin α*a. Площадь может быть рассчитана по формуле= AB*BC*sin α. Так как АВ=ВС=а, то S=a² *sin α, значит R= (a*a*2sinα*a)/(4*a² *sin α)=(a³*2sinα)/(a²*4sinα)=a/2 Площадь круга = πR² =(a/2)²π=(a²/4)*π
АК-высота, угол F=45 градусам (по условию), следовательно
угол FAK=180-90-45=45 градусам, значит Δ FAP-равнобедренный и поэтому FK=KA
FA²=FK²+KA²=2FK²
(12√3)²=2FK²
FK²=432/2=216
FK=√216=6√6
Рассмотрим Δ АРК. Угол АРК=90, т.к. АК-высота, угол Р=60 (по условию), следовательно угол КАР=180-90-60=30. КР=1/2АР, т.к. катет лежащий против угла в 30 градусов равен половине гипотенузы.
АК²+КР²=АР² АК=FK=6√6
(6√6)²+(1/2АР)²=АР²
216+1/4АР²=АР²
АР²-1/4АР²=216
3/4АР²=216
АР²=216*4/3=288
АР=√288=12√2
ответ: АР=12√2