1. радіус кола = 8 дм . Чи може хорда цього кола = 8,5 дм
2. накресліть коло радіусом 4 см. Проведіть у ньому діаметр АВ і хорду АК
3. радіус круга із центром у точці О = 7см. Де (всередині круга, позп кругом, на колі) розташована точка А, якщо ОА=5см
4. у середині круга взяли точку яка не є центром скільки діаметрів можна провести
Тогда х+2х+3х=360
х=60⁰, 2х=120⁰, 3х=180⁰
Углы треугольника по отношению к окружности являются вписанными, т.е. их градусная мера равна 30⁰, 60⁰ и 90⁰
Треугольник прямоугольный, с острым углом в 30⁰, против этого угла лежит меньшая сторона треугольника, равная 17. Катет, лежащий против угла в 30⁰, равен половине гипотенузы. Значит гипотенуза равна 34, эта сторона лежит против угла 90⁰, т.е. это диаметр описанной окружности. Радиус окружности равен 17.
--------------
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°.
Следовательно, биссектрисы этих углов пересекутся под углом 90°
В параллелограмме противолежащие углы равны.
∠bad=∠bcd , следовательно, биссектрисы этих углов параллельны и равны. Проведем биссектрису am=ck=12
Биссектрисы bl и am пересекутся в точке О под прямым углом.
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник (доказать сумеете).
ab=al
ab=bm
am ⊥ bl ⇒ параллелограмм abmk- ромб.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Так как стороны ромба равны, то
4аb²=bl²+am²
4аb²=8²+12²=64+144=208
ab²=52
ab=2√13 ad=3/2 ab ⇒ ad=(2√13)*3/2=3√13
Площадь ромба равна половине произведения его диагоналей.
S abml=8*12:2=48
Высота параллелограмма abcd является и высотой ромба abml, это отрезок hl, проведенный перпендикулярно стороне ромба.
S abmd=lh*bm
lh=S:bm
lh=48: 2√13=24:√13
Площадь параллелограмма равна произведению высоты и стороны, к которой она проведена.
S abcd=hl*ad
S abcd=(24:√13)*3√13=72 (единиц площади)