1 Радиус окружности, вписанной в треугольник, равен 5, а периметр треугольника 24. Найдите площадь треугольника.
2 Не вычисляя углов треугольника, определите его вид(по величине углов), если стороны треугольника равны: а)2 ,3 и 4; б)6,10 и 11; с)8,15 и 17
3 В треугольнике АВС известно, что АВ=12см,ВС=10см,sinA=0,2. Найдите синус угла С треугольника
c^2 = a^2 + b^2 - 2ab*cos (гамма)
15^2 = 12^2 + b^2 - 2*12*b*cos(120) = 12^2 + b^2 - 24b*(-1/2)
225 = 144 + b^2 + 12b
b^2 + 12b - 81 = 0
D/4 = 6^2 + 81 = 36 + 81 = 117 = (3√13)^2
b = -6 + 3√13 = 3√13 - 6 ~ 4,81
По теореме синусов
a/sin(альфа) = b/sin(бета) = c/sin(гамма)
sin(гамма) = sin(120) = √3/2
c/sin(гамма) = 15 / (√3/2) = 15*2/√3 = 30√3/3 = 10√3
sin(альфа) = a / (c/sin(гамма)) = 12 / (10√3) =
= 12√3/(10*3) = 2√3/5 ~ 0,6928;
альфа ~ 43,85 градуса
sin(бета) = b / (c/sin(гамма)) = (3√13 - 6) / (10√3) =
= (3√13 - 6)*√3 / (10*3) = (√13 - 2)*√3 / 10 ~ 0,278;
бета ~ 16,15 градусов
АМ=1\2ВС=МС, тк АМ-медиана, а медиана прямоугольного треугольника равна половине гипотенузы, значит треугольник АМС-равнобедренный.
Рассмотри этот треугольник. В нем угол МАН=46 гр, угол АНМ=90 гр., значит, угол АМН=90-46=44 гр.
Ты ведь знаешь, что углы при основании равнобедр. треугольника равны? Треугольник АМС -равнобедренный по доказанному. Тем более угол противолежащий углам при основании только что был найден: угол АМН= 44 гр. Значит угол А+угол С=180-44=136 гр или уголА=углу С = 136\2=68гр.
Угол С=68 градусов.