№1. Радиус шара равен 4 см. Найдите объем и площадь шара.
№2. Найдите объем шарового сегмента, если его высота равна 9 см, а радиус шара – 7 см.
№3. Найдите объем шарового сектора, если радиус шара равен 5 см, а высота шарового сегмента, из которого состоит шаровой сектор, равен 3 см.
№4. Диаметр шара, равный 18 см, разделен на 3 равные части. Через точки деления проведены плоскости, перпендикулярные диаметру. Найдите объем образовавшегося шарового слоя.
№5. Медный куб, ребро которого 10 см, переплавлен в шар. Найдите радиус шара.
№6. В шаре радиуса 15 см проведено сечение, площадь которого равна 81 см2. Найдите объем меньшего шарового сегмента, отсекаемого плоскостью сечения.
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.