Пирамида правильная, следовательно, в основании лежит правильный треугольник. Площадь полной поверхности - площадь основания+площадь боковой поверхности. Площадь основания S(o) вычислим по формуле: S=(а²√3):4 S(о)=(9√3):4 Площадь боковой поверхности Sб - по формуле Sб=Р*(апофема):2 Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/ Апофему МН найдем из прямоугольного треугольника МОН. Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2 МО=ОН. ОН=r=(3√3):6=(√3):2 МН=(√3):2)*√2=(√3*√2):2 Р=3*3=9 Sб=9*(√3*√2):2):2=9*(√3*√2):4 см² Sполн=(9√3):4+(9*√3*√2):4 Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см² ---- bzs*
В условии ошибка. Если сторона квадрата 24, то его диагональ 24√2 ≈ 34. Тогда в треугольнике ASC сторона АС больше суммы двух других сторон: 34 > 13 + 13, т.е. треугольник с такими сторонами не существует.
Площадь полной поверхности - площадь основания+площадь боковой поверхности.
Площадь основания S(o) вычислим по формуле:
S=(а²√3):4
S(о)=(9√3):4
Площадь боковой поверхности Sб - по формуле
Sб=Р*(апофема):2
Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/
Апофему МН найдем из прямоугольного треугольника МОН.
Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2
МО=ОН.
ОН=r=(3√3):6=(√3):2
МН=(√3):2)*√2=(√3*√2):2
Р=3*3=9
Sб=9*(√3*√2):2):2=9*(√3*√2):4 см²
Sполн=(9√3):4+(9*√3*√2):4
Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см²
----
bzs*
В условии ошибка. Если сторона квадрата 24, то его диагональ 24√2 ≈ 34. Тогда в треугольнике ASC сторона АС больше суммы двух других сторон: 34 > 13 + 13, т.е. треугольник с такими сторонами не существует.
Встречается такая же задача с другими данными:
Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.
Пирамида правильная, значит в основании лежит квадрат, а боковые грани - равные равнобедренные треугольники.
Проведем SH⊥CD. Тогда CH = HD (треугольник SCD равнобедренный).
CH = HD = 1/2 CD = 5.
ΔSCH: ∠SHC = 90°, по теореме Пифагора:
SH = √(SC² - CH²) = √(169 - 25) = √144 = 12
Sпов = Sосн + Sбок
Sосн = AD² = 10² = 100
Sбок = 1/2 Pосн · SH = 1/2 · 10 · 4 · 12 = 240
Sпов = 100 + 240 = 340 ед. кв.