1. Разность двух углов, образовавшихся при пересечении двух прямых, равна 38°. Найдите все образовавшиеся неразвернутые углы. 2. Один из смежных углов в семь раз больше другого. Найдите углы, которые образует биссектриса большего угла со сторонами меньшего.
3. * Прямые АВ и CD пересекаются в точке О. ОК — биссектриса угла AOD, угол СОК = 127°. Найдите величину угла BOD.
1. Пусть х - угол при основании, тогда х+96 - угол при вершине, лежащей против основания. Углы при основании равнобедренного треугольника равны. Сумма углов треугольника равна 180°.
х + х + х+96 = 180
3х = 180 - 96
3х = 84
х = 28
ответ: 28°
2. Пусть k - коэффициент пропорциональности, тогда:
6k + 2k + 7k = 180
15k = 180
k = 12
∠А = 6k = 6 * 12 = 72°
∠В = 2k = 2 * 12 = 24°
∠М = 7k = 7 * 12 = 84°
3. Треугольник DEF - равнобедренный (так как FE=DE), ∠DEF - это угол, лежащий против основания, тогда:
∠EDF = (180 - ∠DEF)/2 = (180 - 27)/2 = 76,5°
Відповідь: длина диагонали АВ 64 см.
Пояснення:
1) ∠АВЕ=180°-60°-90°=30°.
2)ЕА-катет, лежащий против угла 30°. равен половине гипотенузы АВ.
АЕ=1/2АВ
Пусть АВ- х см, АЕ=1/2х
ДЕ=ЕА=1/2х, тогда ДА=х см
3) треугольники АЕВ и ЕБД равны по признаку равенства треугольников (по двум сторонам и углу между ними или по расчету катета и гипотенузы)
4) Значит диагональ ВД=АВ.
если АД=АВ, а ВА=ВД, то треугольник АВД - равносторонний.
5) формула периметра параллелограмма P=1/2 (a+b)
1/2 (2х)=64
х=64
АД=АВ=ВД=64 (см)
ответ: диагональ ВД=64 см.