1) Ребро куба равно а. Найдите расстояние от точки пересечения диагоналей одной из граней до вершин противолежащей ей грани.
2) Грани DAB и DAC тетраэдра ABCD – прямоугольные треугольники с прямыми углами при точке А. Докажите, что рёбра ВС и AD взаимно перпендикулярны.
ЇЇ розміри -dsin α*dcos α = d²sin2α/2.
Площа бічної поверхні призми складає з 3 граней, тоді Sбок = (d²sin2α/2)*3 = 3d²sin2α/2.
2) Якщо кожне ребро дорівнює √2 см, то бічні грані - рівносторонні трикутники. Апофема дорівнює √2*cos 30 = √2*√3/2.
Площа бічної поверхні становить 4*(1/2)*√2*√2*√3/2. = 2√3,
Площа основи - (√2)² = 2.
Тоді повна поверхня дорівнює 2√3 + 2 = 2(√3 + 1).
3) Якщо в основі піраміди прямокутний трикутник, а бічні ребра однакові, то вісь піраміди проходить через середину гіпотенузи основи. Ця вісь становить одночасно апофемою бічної грані.
Тобто ця бічна грань вертикальна та її висота одночасно становить висотою піраміди.
Висота піраміди дорівнює 12*cos 30 = 12*(√3/2) = 6√3.
PH II АС, PH=1/2 АС.
Рассмотрим треугольник АМС. Здесь точки К и Е - середины двух его сторон, значит, КЕ - средняя линия треугольника, и
KE II AC, KE = 1/2 AC.
Т.е. мы имеем, что PH II АС и KE II AC, значит, PH II КЕ.
Также PH=1/2 АС и KE = 1/2 AC, значит РН=КЕ.
Пользуемся одним из признаков параллелограмма: если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм. РКЕН - параллелограмм.