1) С кем вы познакомились в начале рассказа? Прочитайте данный абзац. 2) Какие детали в описании Очумелова и городового вы заметили? 3) Как вы понимаете выражение ни души?
Пусть PH –высота треугольной пирамиды PABC, ABC – прямоугольный треугольник, в котором C = 90o, AC = BC = 8 . Поскольку PH – перпендикуляр к плоскости ABC, отрезки AH, BH и CH – проекции наклонных AP, BP и CP на плоскость ABC . По условию AP = BP = CP = 9.
Прямоугольные треугольники DAH, DBH и DCH равны по катету и гипотенузе, поэтому AH = BH = CH и H – центр окружности, описанной около треугольника ABC, а т. к. этот треугольник прямоугольный, то H – середина гипотенузы AB . Далее находим: PH = корень квадратный из 44+5 = 7.
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины.
1) Докажем, что две медианы делятся точкой пересечения в отношении 2 : 1, считая от вершины.
В ΔАВС АМ и ВК - медианы. О - точка пересечения медиан.
Проведем КЕ ║ АМ. Так как АК = КС, то и МЕ = ЕС по теореме Фалеса.
Т.е. Е - середина отрезка МС.
Отметим Р - середину отрезка ВМ и проведем РТ ║ АМ, тогда ВТ = ТО по теореме Фалеса.
Итак, ВР = РМ = МЕ, РТ ║ МО ║ ЕК, значит ВТ = ТО = ОК по теореме Фалеса.
ВО : ОК = 2 : 1.
Аналогично можно доказать, что АО : ОМ = 2 : 1.
2) Докажем, что все три медианы пересекаются в одной точке.
Так как две медианы точкой пересечения делятся 2 : 1, то медиана проведенная из вершины С, должна разделить медиану ВК в отношении 2 : 1, т.е. должна пройти через точку О. Следовательно, все три медианы пересекаются в одной точке.
AP = BP = CP = 9.
Прямоугольные треугольники DAH, DBH и DCH равны по катету и гипотенузе, поэтому AH = BH = CH и H – центр окружности, описанной около треугольника ABC, а т. к. этот треугольник прямоугольный, то H – середина гипотенузы AB . Далее находим:
PH = корень квадратный из 44+5 = 7.
MABCp = SΔ ABC· pH = CP · BC· AC· DH =
= 8·2= 16
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины.
1) Докажем, что две медианы делятся точкой пересечения в отношении 2 : 1, считая от вершины.
В ΔАВС АМ и ВК - медианы. О - точка пересечения медиан.
Проведем КЕ ║ АМ. Так как АК = КС, то и МЕ = ЕС по теореме Фалеса.
Т.е. Е - середина отрезка МС.
Отметим Р - середину отрезка ВМ и проведем РТ ║ АМ, тогда ВТ = ТО по теореме Фалеса.
Итак, ВР = РМ = МЕ, РТ ║ МО ║ ЕК, значит ВТ = ТО = ОК по теореме Фалеса.
ВО : ОК = 2 : 1.
Аналогично можно доказать, что АО : ОМ = 2 : 1.
2) Докажем, что все три медианы пересекаются в одной точке.
Так как две медианы точкой пересечения делятся 2 : 1, то медиана проведенная из вершины С, должна разделить медиану ВК в отношении 2 : 1, т.е. должна пройти через точку О. Следовательно, все три медианы пересекаются в одной точке.