2. Так как известно, что KL перпендикулярно АВ, то углы ALK и BLK равны 90 градусам. Также нас даны равные углы в условии AKL и BKL, а сторона KL - общая, следовательно, треугольники равны по двум углам и стороне между ними (второй признак равенства треугольников).
3. Периметр треугольника =a+b+c a+b+c=28. Треугольник существует тогда, когда каждая его сторона МЕНЬШЕ суммы двух других Для первого случая: пусть a=15, тогда 15+b+c=28 b+c=13 < a, следовательно НЕТ
Для второго случая: пусть a=14, тогда 14+b+c=28 b+c=14 = a, следовательно НЕТ
Для третьего случая: пусть a=13, тогда 13+b+c=28 b+c=15 > a, следовательно ДА
1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
3. Периметр треугольника =a+b+c
a+b+c=28. Треугольник существует тогда, когда каждая его сторона МЕНЬШЕ суммы двух других
Для первого случая: пусть a=15, тогда
15+b+c=28
b+c=13 < a, следовательно НЕТ
Для второго случая: пусть a=14, тогда
14+b+c=28
b+c=14 = a, следовательно НЕТ
Для третьего случая: пусть a=13, тогда
13+b+c=28
b+c=15 > a, следовательно ДА
1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение: