1. сколько прямых можно провести через две точки? 2. сколько общих точек могут иметь две прямые? 3. объясните, что такое отрезок, середина отрезка. постройте отрезок ав и отметьте середину отрезка точку с.4. объясните, что такое луч. как обозначаются лучи? выполните чертеж.5. какая фигура называется углом? объясните, что такое вершина и стороны угла. выполните чертеж.6. какой угол называется развернутым, острым? выполните чертеж.7. какой угол называется прямым, тупым? выполните чертеж.8. какой луч называется биссектрисой угла? 9. какие фигуры называются равными? 10. объясните, как сравнить два отрезка.11. объясните, как сравнить два угла.12. что такое градусная мера угла? 13. назовите единицы измерения углов. что называют градусом? 14. какие углы называются смежными? выполните чертеж.15. свойство смежных углов. выполните чертеж.16. свойство вертикальных углов. выполните чертеж.17. какие углы называются вертикальными? выполните чертеж.18. какие прямые называются перпендикулярными?
Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.
Находим координаты точка А как точки пересечения сторон.
2x-y+5=0 |x(-2) -4x+2y-10=0
x-2y+4=0 x-2y+4=0
-3x - 6 = 0,
x(A) = -6/3 = -2,
y(A) = 2x - 5 = 2*(-2) + 5 = 1.
Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).
х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,
у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.
Через точку С проводим прямую, параллельную АД.
Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.
Угловой коэффициент параллельной прямой сохраняется.
у(ВС) = (1/2)х + в. Подставим координаты точки С.
7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.
Уравнение ВС: у = (1/2)х + 5.
Находим координаты точки В кк точки пересечения АВ и ВС.
2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.
Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.
Находим длины сторон.
AB (c) = √((xB-xA)² + (yB-yA)²) = 20 4,472135955
BC (a) = √((xC-xB)² + (yC-yB)²) = 20 4,472135955
CD = √((xD-xC)² + (yD-yC)²) = 20 4,472135955
AD = √((xC-xA)² + (yC-yA)²) = 20 4,472135955 .
Находим длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = 72 8,485281374
BD = √((xD-xB)² + (yD-yB)²) = 8 2,828427125 .
Как видим, это ромб.
Его площадь S = (1/2)*AC*BD = (1/2)*V72*V8 = 12.
Высоты равны h = S/a = 12/V20 = 12/(2V5) = 6V5/5.
ответ: 1) V14 2) 90°
Объяснение:
vec(a) {ax;ay}; vec(b) {bx;by}
vec(a)+vec(b) {ax+bx;ay+by}
модуль (длина) вектора = корню квадратному из суммы квадратов координат (т.Пифагора)
(ax)^2 + (ay)^2 = 9
(bx)^2 + (by)^2 = 25
(ax+bx)^2 + (ay+by)^2 = 4*13 = 52
(ax)^2 + (bx)^2 + 2*ax*bx + (ay)^2 +(by)^2 + 2*ay*by = 52
9 + 25 + 2(ax*bx+ay*by) = 52
2(ax*bx+ay*by) = 18
найти нужно
vec(a)-vec(b) {ax-bx;ay-by}
|vec(a)-vec(b)| = корень из (
(ax)^2 + (bx)^2 - 2*ax*bx + (ay)^2 +(by)^2 - 2*ay*by ) = V(9 + 25 - 18) = V14
косинус угла между векторами = скалярное произведение векторов / произведение их модулей
cos(x) = (ax*(ax-bx)+ay*(ay-by)) / (3V14)
cos(x) = (9-9) / (3V14)
эти векторы перпендикулярны
cos(x) = 0 ---> угол = 90°