1 Составьте уравнение прямой АВ, если А (4;-2) и С (-1;-3)
[3]
2 АВ – диаметр окружности с центром О. Найдите
координаты центра окружности, если А (-5;8) и В (7;-4). И
запишите уравнение окружности [4]
3 Выполнив построение, выясните взаимное расположение
двух окружностей, заданных уравнениями
(х-3)2+ (у-3)2=9 и (х+3)2+ (у-5)2=49 [3]
4 Точки А(-5; 3), В(1;6), С(7;2), D(-2;-3) – вершины
прямоугольной трапеции с основаниями АВ и CD. Найдите
длину средней линии и площадь трапеции.[5]
Вариант 2
1.Составьте уравнение прямой АВ, если А (-3;-5) и С (2;-4)
[3]
2 АВ – диаметр окружности с центром О. Найдите
координаты центра окружности, если А (-3;-7) и В (5;-1). И
запишите уравнение окружности [4]
3 Выполнив построение, выясните взаимное расположение
двух окружностей, заданных уравнениями
(х-2)2+ (у+3)2=16 и (х+1)2+ (у-2)2=64 [3]
4 Точки А(-2; 5), В(5;4), С(4;-2), D(-10;0) – вершины
прямоугольной трапеции с основаниями АВ и CD. Найдите
длину средней линии и площадь трапеции.[5]
давайте только без приколов бан от админа не хотите словить так ато еще спишит балы
Перпендикуляр от точки к прямой
Отрезок AC называется перпендикуляром, проведённым из точки A прямой a , если прямые AC и a перпендикулярны.
пер3.jpg
Точка C называется основанием перпендикуляра.
От точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Perpendikuls.png Perpendikuls1.png
Докажем, что от точки A , не лежащей на прямой BC , можно провести перпендикуляр к этой прямой.
Допустим, что дан угол ∡ABC .
Отложим от луча BC угол, равный данному, и совместим эти углы накладыванием (представим, что сложим лист бумаги с равными углами по стороне BC ).
Сторона BA совместится со стороной BA1 .
При этом точка A наложится на некоторую точку A1 .
Следовательно, совмещается угол ∡ACB с ∡A1CB .
Но углы ∡ACB и ∡A1CB — смежные, значит, каждый из них прямой.
Прямая AA1 перпендикулярна прямой BC , а отрезок AC является перпендикуляром от точки A к прямой BC .
Если допустить, что через точку A можно провести ещё один перпендикуляр к прямой BC , то он бы находился на прямой, пересекающейся с AA1 . Но две к одной и той же прямой перпендикулярные прямые должны быть параллельны и не могут пересекаться.
Это противоречие, что означает: через данную точку к прямой можно провести только один перпендикуляр.
Медианы, биссектрисы и высоты треугольника
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
Поэтому для построения медианы необходимо выполнить следующие действия:
1. найти середину стороны;
2. соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.
Mediana.png
У треугольника три стороны, следовательно, можно построить три медианы.
Все медианы пересекаются в одной точке.
Mediana1.png
Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.
Поэтому для построения биссектрисы необходимо выполнить следующие действия:
1. построить биссектрису какого-либо угла треугольника (биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);
2. найти точку пересечения биссектрисы угла треугольника с противоположной стороной;
3. соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса треугольника.
Bisektrise.png
У треугольника три угла и три биссектрисы.
Все биссектрисы пересекаются в одной точке.
Bisektrise1.png
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.
Поэтому для построения высоты необходимо выполнить следующие действия:
1. провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);
2. из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней (перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол 90° ) — это и будет высота.
Augstums.png
Так же как медианы и биссектрисы, треугольник имеет три высоты.
Высоты треугольника пересекаются в одной точке.
Augstums1.png
Но, как выше упомянуто, для некоторых видов треугольников построение высот и точки их пересечения отличаются.
Если треугольник с прямым углом, то стороны, образующие прямой угол, можно назвать высотами, так как они перпендикулярны одна к другой. Точкой пересечения высот является общая вершина перпендикулярных сторон.
Augstums2.png
Если треугольник с тупым углом, то высоты, опущенные с вершин острых углов, выходят вне треугольника к продолжениям сторон. Прямые, на которых расположены высоты, пересекаются вне треугольника.
Augstums3.png
Если из одной и той же вершины провести медиану, биссектрису и высоту, то медиана окажется самым длинным отрезком, а высота — самым коротким отрезком.
Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой.
AC = 5; BC = 12; AB = 13
Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30
Найдем радиус вписанной окружности.
r = OK = OM = ON = 2S/P = 2*30/30 = 2 см
Высота H = OD = 4√2 см
Апофемы, перпендикулярные к ребрам основания
DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см
Площади боковых граней
S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см.
S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см.
S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см.
S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.