1)сторони трикутника дорівнюють 30,26,8 см. обчислити радіус описаного кола. 2) знайти периметр прямокутного трикутника з гіпотенузою 10 см. і гострим кутом 30градусів
Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
Проведём радиусы ОА⊥АВ, ОС⊥ВD и ОЕ⊥DЕ, а также соединим центр окружности О с точками В и D. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСD и ОЕD.
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg
DВ = 21,65см
Объяснение:
Проведём радиусы ОА⊥АВ, ОС⊥ВD и ОЕ⊥DЕ, а также соединим центр окружности О с точками В и D. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСD и ОЕD.
ΔОАВ = ΔОСВ (сторона ОВ - общая; ОА = ОС = R-радиусу)
Отсюда следует, что АВ = ВС = х(обозначение х для простоты письма)
ΔОСD = ΔОЕD (сторона ОD - общая; ОЕ = ОС = R-радиусу)
Отсюда следует, что СD = DЕ = у(обозначение у для простоты письма)
Нам нужно найти DВ = ВС + СD = х + у
Длина ломаной АВDС = АВ + ВС + СD + DЕ = 2х + 2у = 43,3см (по условию. Отсюда:
х + у = 43,3 : 2
х + у = 21,65(см)