1. Стороны угла M касаются окружности с центром O радиуса r. Найдите: а) OM-?, если r=7 cм,а угол М=60(градусов) б) r-?, если OM=16 см, а угол М=90(градусов)
Понятно, зачем нам сказано, что биссектрисы пересекаются в одной точке - ведь эта точка равноудалена от . сторон четырехугольника и поэтому является центром вписанной окружности. А раз в четырехугольник можно вписать окружность, суммы противоположных сторон равны. Таким образом, ME+BD=MD+BE. Это равенство позволяет найти третью сторону треугольника, используя связь между сторонами и медианами треугольника, а также тот факт, что медианы в точке пересечения делятся в отношении 2:1, считая от вершины.
Пусть AB=c, BC=a, CA=b, тогда
. Поэтому
а умножив для упрощения это равенство на 6 и подставив b=12 и c=10, получаем
При всей моей любви к иррациональным уравнениям, решать это уравнение не хочется. Давайте попробуем угадать решение. И если Вы достаточно настойчивы, то удача в этой задаче к Вам придет - подходит a=10. (). Другого решения быть не может, поскольку при a>0 правая часть возрастает, а левая убывает.
Таким образом, мы доказали, что наш треугольник равнобедренный со сторонами 12, 10 и 10. Иными словами, он состоит из двух прямоугольных треугольников с гипотенузой 10 и катетом 6, то есть треугольников, подобных египетскому 3-4-5. Площадь египетского треугольника равна 6, подобного треугольника с коэффициентом подобия 2 равна 24, а поскольку их два, суммарная площадь равна 48.
И наконец, кто не знает формулу для длины медианы, можно воспользоваться или теоремой косинусов, или теоремой Стюарта, или теоремой о сумме длин диагоналей параллелограмма.
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
Понятно, зачем нам сказано, что биссектрисы пересекаются в одной точке - ведь эта точка равноудалена от . сторон четырехугольника и поэтому является центром вписанной окружности. А раз в четырехугольник можно вписать окружность, суммы противоположных сторон равны. Таким образом, ME+BD=MD+BE. Это равенство позволяет найти третью сторону треугольника, используя связь между сторонами и медианами треугольника, а также тот факт, что медианы в точке пересечения делятся в отношении 2:1, считая от вершины.
Пусть AB=c, BC=a, CA=b, тогда
. Поэтому
а умножив для упрощения это равенство на 6 и подставив b=12 и c=10, получаем
При всей моей любви к иррациональным уравнениям, решать это уравнение не хочется. Давайте попробуем угадать решение. И если Вы достаточно настойчивы, то удача в этой задаче к Вам придет - подходит a=10. (). Другого решения быть не может, поскольку при a>0 правая часть возрастает, а левая убывает.
Таким образом, мы доказали, что наш треугольник равнобедренный со сторонами 12, 10 и 10. Иными словами, он состоит из двух прямоугольных треугольников с гипотенузой 10 и катетом 6, то есть треугольников, подобных египетскому 3-4-5. Площадь египетского треугольника равна 6, подобного треугольника с коэффициентом подобия 2 равна 24, а поскольку их два, суммарная площадь равна 48.
И наконец, кто не знает формулу для длины медианы, можно воспользоваться или теоремой косинусов, или теоремой Стюарта, или теоремой о сумме длин диагоналей параллелограмма.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
= a · cosβ(sin(α/2) + cos(α/2)) · 2 · a · sinβ =
= 2a²sinβ·cosβ(sin(α/2) + cos(α/2)) =
= a²sin2β (sin(α/2) + cos(α/2))