1)Сума векторів a (3;9) та b (x;-2) дорівнює вектору c (7;y). Чому дорівнюють x та y? 2)Дано паралелограм ABCD. Вектор AC=a , а CD= -b . Знайдіть вектор CB? 3)Знайти косинус кута між векторами a+b й a-b , якщо a(-1;2) та b(0;2) .
а)- 1/2√17 б)-1/√17 в)1/2√17 г)1/√17
Пересечение двух прямых образует вертикальные углы. По свойству вертикальных углы равны между собой. Значит 2 противоположных угла буду равны между собой и равны 21°.
Сумма 4-х вертикальных углов, образованных пересечением 2-х прямых равна 360°.
Пэтому сумма 2-х других углов равна:
(360° - 2 * 21) / 2 = 159°.
или
Допустим, пересеклись прямые AB и CD в точке O (это писать не нужно, просто обозначить на рисунке)
Дано: ∠AOD = 21°.
Найти: ∠AOC, ∠COB, ∠DOB.
∠COB = ∠AOD = 21° как вертикальные.
∠AOC = 180° - ∠AOD = 180° - 21° = 159° как смежные.
∠DOB = ∠AOC = 159° как вертикальные.
ответ: ∠AOC = ∠DOB = 159°, ∠COB = 21°.
Пересечение двух прямых образует вертикальные углы. По свойству вертикальных углы равны между собой. Значит 2 противоположных угла буду равны между собой и равны 21°.
Сумма 4-х вертикальных углов, образованных пересечением 2-х прямых равна 360°.
Пэтому сумма 2-х других углов равна:
(360° - 2 * 21) / 2 = 159°.
или
Допустим, пересеклись прямые AB и CD в точке O (это писать не нужно, просто обозначить на рисунке)
Дано: ∠AOD = 21°.
Найти: ∠AOC, ∠COB, ∠DOB.
∠COB = ∠AOD = 21° как вертикальные.
∠AOC = 180° - ∠AOD = 180° - 21° = 159° как смежные.
∠DOB = ∠AOC = 159° как вертикальные.
ответ: ∠AOC = ∠DOB = 159°, ∠COB = 21°.