1. Сумма двух углов равнобедренной трапеции равна 220°. Найдите меньший угол трапеции. ответ дайте в градусах.
2. Одна из сторон параллелограмма равна 12, а опущенная на нее высота равна 10. Найдите площадь параллелограмма. 3. На рисунке изображен параллелограмм. Используя рисунок, найдите синус угла HBA.
Построение ясно из рисунка. Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н. Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат. Диагональ квадрата равна в нашем случае 6√2. Ее половина ОС=3√2. Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14. Необходимо найти перпендикуляр SH к плоскости BCMN. Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые. Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF. Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC). Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO). Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG. FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14. EF находим из треугольника EOF по Пифагору: EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23. ответ: SH=6√14/√23.
1. Т к стороны треугольника пропорциональны числам 5,6,8, то длины сторон треугольника, подобного данному 5k, 6k, 8k. Разность между наибольшей и наименьшей его сторонами равна 8k - 5k =15; k = 5. Длины сторон треугольника, подобного данному 25, 30, 40. 2. Т к углы треугольника пропорциональны числам 6,3,1, то эти углы равны 6* 180/10=108°, 3* 180/10=54°, 1* 180/10=18°. Биссектриса делит наибольший угол на равные части по 54°. Тогда треугольник, который биссектриса,проведенная из вершины наибольшего угла,отсекает от данного треугольника треугольник,подобен данному по двум углам: угол 18° общий и в каждом треугольнике есть угол 54°.
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.
Длины сторон треугольника, подобного данному 25, 30, 40.
2. Т к углы треугольника пропорциональны числам 6,3,1, то эти углы равны 6* 180/10=108°, 3* 180/10=54°, 1* 180/10=18°. Биссектриса делит наибольший угол на равные части по 54°. Тогда треугольник, который биссектриса,проведенная из вершины наибольшего угла,отсекает от данного треугольника треугольник,подобен данному по двум углам: угол 18° общий и в каждом треугольнике есть угол 54°.