1.существует ли треугольник, в котором: а) стороны равны 10 см, 15 см и 25 см; б) стороны относятся как 3: 5: 10; в) углы равны 46°, 64° и 80°; г) углы относятся как 3: 5: 10.ответы поясните. 2.из точки а к прямой bc проведены перпендикуляр ab и наклонная ac. определите длину наклонной, если угол между перпендикуляром и наклонной составляет 30°, а проекция наклонной равна 8 см. 3.задан рисунок: на рисунке: oa=ob; bd=ac. точка e – точка пересечения прямых ad и bc. докажите, что oe – биссектриса угла doc.указание: для решения необходимо воспользоваться тремя различными признаками равенства для различных пар треугольников.
1)рассмотрим треугольник овс, тк вд- диагональ то угол овс -30градусов, угол вос - 90градусов , всо - 60 градусов
2) анологично рассматриваешь треугольник аов, углы те же самые
3) тк угол вао равен 60 градусов, угол всо равен тоже 60 гр, угол авс равен 60 гр отсюда следует что треугольники авс и асд равны и они равносторонние , отсюда следует диагональ равна стороне, короче периметр равен 20умножить на 4 и равно 80
Удачи :)
угол ВОС=углу ДОА как вертикальные
ВО/ОД=СО/ОА; 6/18=5/15=1/3
Значит треугольники подобны по двум пропорциональным сторонам и углу между ними.
Так как треугольники подобны, то у них соответствующие углы равны:
угол СВО=углу АДО и угол ВСО=углу ДАО.
Так как эти углы являются внутренними накрест лежащими и равны, то прямые ВС и АД - параллельны.
Данный четырехугольник имеет две параллельные стороны и две другие не параллельны - значит АВСД - трапеция.
б) Так как треугольники АОД и ВОС подобны с коэффициентом подобия 3, то площади их относятся как квадрат коэффициента подобия, а значит
S(АОД)/S(ВОС) = 9