1)Точка А не лежит в плоскости, а точка Е - принадлежит этой плоскости. АЕ = 13 cм, проекция этого отрезка на плоскость равна 5см. Каково расстояние от точки А до данной плоскости? 2)Равнобедренный треугольник ABE находится в плоскости α. Боковые стороны треугольника ABE равны по 10 см, а сторона основания AE=16 см. К этой плоскости проведены перпендикуляр CB, который равен 6 см, и наклонные CA и CE. Вычислите расстояние от точки C до стороны треугольника AE. 3) Через вершину А прямоугольного треугольника ABC с прямым углом С проведена прямая AD, перпендикулярная к плоскости треугольника, а) Докажите, что треугольник CBD прямоугольный, б) Найдите BD, если ВС = 4, DC =6.
2) В прямоугольном треугольнике ABC:
AB - гипотенуза
BC - катет, противолежащий углу 48 градусов
AC = 4см, - катет прилежащий углу 48 градусов
∠BAC = 48°
Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC.
BC
tg(BAC) = ⇒ BC = AC * tg(BAC)
AC
По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061
BC = AC * 1,11061
BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)
2) В прямоугольном треугольнике ABC:
AB - гипотенуза
BC - катет, противолежащий углу 48 градусов
AC = 4см, - катет прилежащий углу 48 градусов
∠BAC = 48°
Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC.
BC
tg(BAC) = ⇒ BC = AC * tg(BAC)
AC
По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061
BC = AC * 1,11061
BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)