Vконуса = (1/3) П r^2 *h. Так как конус равносторонний и его диаметр равен 2r, то
h = (a*sqrt3)/2 = (2r*sqrt3)/2=r*sqrt3,
тогда Vконуса = (1/3) П r^2 * r*sqrt3=(П r^3 *sqrt3)/3
Vцилиндра = П*R^2 *H. Так как цилиндр равносторонний, с диаметром 2R, то его высота H=2R. Тогда Vцилиндра= П* R^2 *2R = 2П* R^3
(П r^3 *sqrt3)/3 = 2П* R^3. Отсюда (r^3)/(R^3) = (sqrt3)/6
Sполная конуса = Пr(l+r) 3Пr^2; Sполная цилиндра = 2П(R+H)R=6ПR^2
Тогда Sк/Sц = (r^2)/(2R^2). Теперь из выделения найти r/R и подставить в последнее отношение
V₁=πR₁² *H₁R₂=R₁/2H₂=4H₁
V₂=πR₂² *H₂V₂=π(R₁/2)² *(4H₁)V₂=π(R₁²/4)*4H₁V₁=πR₁² *H₁, => V₂=V₁ответ: объём не изменится
2. R₁=R₂H₁/H₂=2. H V_{1} = \frac{1}{3} * \pi R_{1} ^{2} * H_{1} V_{2} = \frac{1}{3}* \pi R_{2} ^{2} * H_{2} V_{2} = \frac{1}{3} * \pi * R_{1} ^{2}* (2 H_{1} )₁=2*H₂ V_{2}=4*( \frac{1}{3} \pi R_{1} ^{2} * H_{1} ) \frac{ V_{1} }{ V_{2} } = {1}{3} \pi R_{1} ^{2} * H_{1} }{4*( \frac{1}{3} \pi R _{1} ^{2} * H_{1} )} } \frac{ V_{1} }{ V_{2} } = {1}{4}
Vконуса = (1/3) П r^2 *h. Так как конус равносторонний и его диаметр равен 2r, то
h = (a*sqrt3)/2 = (2r*sqrt3)/2=r*sqrt3,
тогда Vконуса = (1/3) П r^2 * r*sqrt3=(П r^3 *sqrt3)/3
Vцилиндра = П*R^2 *H. Так как цилиндр равносторонний, с диаметром 2R, то его высота H=2R. Тогда Vцилиндра= П* R^2 *2R = 2П* R^3
(П r^3 *sqrt3)/3 = 2П* R^3. Отсюда (r^3)/(R^3) = (sqrt3)/6
Sполная конуса = Пr(l+r) 3Пr^2; Sполная цилиндра = 2П(R+H)R=6ПR^2
Тогда Sк/Sц = (r^2)/(2R^2). Теперь из выделения найти r/R и подставить в последнее отношение