1. [ ] Точка С – середина отрезка АВ. Найдите координаты точки В, если С(-2;3), А(-6; -5)
2. а) [ ] АВ – диаметр окружности с центром О. Найдите координаты центра
окружности, если А(8; -3), В(-2;-5)
b) [ ] Запишите уравнение окружности, используя условия пункта а)
3. [ ] Точки А(-3; 5), В(3; 5), С(3; 10)– последовательные вершины
прямоугольника. Найдите координаты четвертой вершины этого прямоугольника.
АВСД - р/б трапеция
АВ=СД
уг АВД=90*
уг АДВ = уг СДВ
углы трапеции -?
Решение:
1) В р/б трапеции углы при основаниях равны, значит если обозначим уг АДВ = уг СДВ = х градусов, тогда угол ДАВ = х*
2) АД || BC и ВД - секущая, значит уг АДВ = уг ДВС = х*
3) В трапеции углы прилежащие к одной боковой стороне в сумме 180*, получаем:
2х+х+90=180
3х=90
х=30 градусов, возвращаемся к обозначениям, получаем:
В трапеции АВСД
уг А=уг Д=60*, уг В=уг С= 180-60=120*.
ответ:60*; 60*; 120*; 120*.
Дано:
АВСД - р / б трапеція
АВ = СД уг АВД = 90 *
уг АДВ = уг СДВ
кути трапеції -?
рішення:
1) В р / б трапеції кути при підставах рівні, значить якщо позначимо уг АДВ = уг СДВ = х градусів, тоді кут ДАВ = х *
2) АД || BC і ВД - січна, значить уг АДВ = уг ДВС = х *
3) В трапеції кути прилеглі до однієї бічній стороні в сумі 180 *, отримуємо: 2х + х + 90 = 180
3х = 90
х = 30 градусів, повертаємося до позначень, отримуємо:
В трапеції АВСД
уг А = уг Д = 60 *, уг В = уг С = 180-60 = 120 *.
Відповідь: 60;60;120;120
(90/3)*2=60° - больший угол треугольника и это есть острый угол трапеции.
Поскольку трапеция имеет равные боковые стороны, то стороны имеют и равные прилегающие углы.
360-(60*2)=240°
240 : 2 = 120°
Пара острых углов по 60°
Тупые углы по 120°