1. Точка в лежит на отрезке AC, AB = 6,3 см; ВС 27 ми. Найти АС,
2. Найдите радиус круга, диаметр которого равен 12,6 см,
3. Точки A, B, и с лежат на одной прямой, АВ = 12 см; ВС = 13.5 см
найти AC.(рассмотреть все случаи)
4. Какие единицы измерения использовались в древности?
ЗАДАНИЕ 1
Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.
Проведем через вершину пирамиды S плоскости, перпендикулярные ребрам двугранных углов пирамиды, то есть плоскости, перпендикулярные сторонам основания пирамиды и, следовательно, перпендикулярные самому основанию.
Тогда у всех этих плоскостей имеются две общие точки: вершина пирамиды S и ее проекция на основание пирамиды точка О. То есть эти плоскости пересекаются по прямой SO, являющейся высотой пирамиды. Линии пересечения этих плоскостей и пирамиды - это высота боковой грани и перпендикуляр из точки О основания высоты пирамиды к стороне основания пирамиды. Этот перпендикуляр - проекция высоты боковой грани на плоскость основания и в силу равенства двугранных углов (дано) одинаков для всех проведенных плоскостей, так как тангенс этих углов равен отношению высоты пирамиды к проекции высоты боковой грани. Итак, точка основания высоты пирамиды в нашем случае равноудалена от сторон основания пирамиды, следовательно, расстояние от этой точки до стороны основания пирамиды является радиусом вписанной в основание пирамиды окружности, что и требовалось доказать.
ЗАДАНИЕ 2.
Основание правильной пирамиды SABCD - квадрат ABCD со стороной "а". Его площадь равна а². Значит площадь диагонального сечения равна а²/2 (дано). Диагональное сечение правильной пирамиды - равнобедренный треугольник ASC с основанием - диагональю квадрата, равной а√2. Площадь диагонального сечения S=(1/2)*АС*SO (SO - высота пирамиды). Итак, (1/2)*а√2*SO = а²/2. Тогда
SO = (а²/2)/(а√2/2) = a√2/2. В прямоугольном треугольнике SOA катет АО - половина диагонали АС. АО=a√2/2. Значит треугольник SOA - равнобедренный и <A = 45°. Тогда в равнобедренном треугольнике ASC углы при основании равны по 45°, а угол при вершине равен 90°. Значит стороны AS и SC взаимно перпендикулярны.
AS и SC - противоположные ребра пирамиды. Они перпендикулярны. Что и требовалось доказать.
Пусть точкой пересечения СК и BK будет точка О. В треугольнике CBL точка О лежит на середине гипотенузы BL и является центром описанной окружности треугольника. Следовательно BO=CO и треугольник BCO - равнобедренный. Значит угол CBO равен углу BCO и равны B/2.
Т.к. CK=AC, то треугольник AKC - равнобедренный и угол CAK равен углу CKA и равны А. Значит угол АСК=180-(А+А)=180-2А.
Угол ACB=90 и равен сумме углов BCK+ACK, где ВСК=ВСО=В/2
В/2+180-2А=90 (А+В=90 => А=90-В)
В/2+180-2(90-В)=90
В/2+180-180+2В=90
5В/2=90
В=36°
ответ: угол АВС=36°.