1.Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 20, сторона BC равна 36, сторона AC равна 48. Найдите MN. * 96
18
72
40
24
В треугольнике ОМР точки А,В,С- середины сторон ОМ, ОР и МР. Найдите перимтер АМС, если периметр треугольника АВС равен 62см *
248 см
93 см
31 см
132 см
62 см
В треугольнике АВС точки ЕиК- середины сторон АВ и АС. Найдите площадь треугольника АВС, если площадь треугольника АЕК=24см2 *
96 см2
6 см2
48 см2
8см2
В треугольнике АВС точки М и Р- середины сторон АВ и АС. Найдите площадь АМР, если МВСР=12 *
16
3
6
48
В треугольнике ЕКО точки С и Д-середины сторон ЕК и КО. Найдите площадь треугольника ЕКО, если площадь ЕСДО=72. *
36
18
144
96
В треугольнике АВС точки Е и Р-середины сторон ВС, АС. Определите вид четырехугольника АВЕР. *
ромб
квадрат
трапеция
параллелограмм
произвольный четырехугольник
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку