1. Треугольник ABC равнобедренный с основа- нием AC. На его биссектрисе вD взята точка м, а на основании — точка к, причем, мк | АВ. Найдите уг- лы треугольника MKD, если угол ABC =100°, угол BAC = 40°
Пусть m1, m2, m3 – образы точки m при последовательных отражениях. три из четырёх проделанных преобразований (симметрии относительно прямой ab, прямой ac и точки a) не меняют расстояния до точки a. поскольку точка m осталась на месте, то и симметрия относительно bc не изменила расстояния до точки a. значит одна из точек mi лежит на прямой bc. последовательные отражения относительно ac и ab есть поворот на 2 ∠ bac, а отражение относительно точки a – поворот на 180 . значит, композиция всех этих преобразований является поворотом точки m на 2 ∠ bac + 180 . так как m осталось неподвижна, то 2 α + 180 делится на 2 π . значит, ∠ bac = 90 .
ответ: рассматриваем равновесие точки с, которая считается несвободной, так как на нее наложены связи в виде стержней ас и вс. освобождаем точку с от связей и заменяем их силами реакций связей, считая, что стержень ас растягивается, а стержень вс сжимается под действием силы f. обозначим реакцию стержня ас через n1, а реакцию стержня вс через n2. в итоге точка с становится свободной, находясь под действием плоской системы трех сходящихся сил: активной силы f и сил реакций n1 и n2 (рис. 1, б). приняв точку о за начало координат, перенесем силы f, n1 и n2 параллельно самим себе в эту точку (рис. 1, в) и составляем уравнения проекций сил на оси координат:
или
(1)
и
. (2)
умножим уравнение (1) на , получим
(3)
. (4)
после сложения уравнений (3) и (4) получим
откуда 2n2 = f или н. из уравнения (1) получаем, что
или н.
графический метод. для решения этим методом выбираем масштаб силы f (например, 10 н = 1 мм) и строим замкнутый треугольник сил (рис. 1, г). из произвольной точки о проводим прямую, параллельную вектору f, и откладываем на этой прямой в выбранном масштабе вектор . из конца вектора (точка а) проводим прямую, параллельную вектору , а из точки о — прямую, параллельную вектору . пересечение этих прямых дает точку в. получили замкнутый треугольник сил оав, стороны которого в выбранном масштабе изображают силы, сходящиеся в точке с. величины сил n1и n2 определим после измерения сторон ав и во треугольника оав.
ответ: рассматриваем равновесие точки с, которая считается несвободной, так как на нее наложены связи в виде стержней ас и вс. освобождаем точку с от связей и заменяем их силами реакций связей, считая, что стержень ас растягивается, а стержень вс сжимается под действием силы f. обозначим реакцию стержня ас через n1, а реакцию стержня вс через n2. в итоге точка с становится свободной, находясь под действием плоской системы трех сходящихся сил: активной силы f и сил реакций n1 и n2 (рис. 1, б). приняв точку о за начало координат, перенесем силы f, n1 и n2 параллельно самим себе в эту точку (рис. 1, в) и составляем уравнения проекций сил на оси координат:
или
(1)
и
. (2)
умножим уравнение (1) на , получим
(3)
. (4)
после сложения уравнений (3) и (4) получим
откуда 2n2 = f или н. из уравнения (1) получаем, что
или н.
графический метод. для решения этим методом выбираем масштаб силы f (например, 10 н = 1 мм) и строим замкнутый треугольник сил (рис. 1, г). из произвольной точки о проводим прямую, параллельную вектору f, и откладываем на этой прямой в выбранном масштабе вектор . из конца вектора (точка а) проводим прямую, параллельную вектору , а из точки о — прямую, параллельную вектору . пересечение этих прямых дает точку в. получили замкнутый треугольник сил оав, стороны которого в выбранном масштабе изображают силы, сходящиеся в точке с. величины сил n1и n2 определим после измерения сторон ав и во треугольника оав.
объяснение: