Объяснение:
А) х=(х₁+х₂):2 ,у=(у₁+у₂):2 ,где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка , (х;у)-координаты середины.
А(2;4) ,В(8;-4) . О-середина АВ , найдем ее координаты.
х(О)= ( х(А)+х(В) )/2 у(О)= ( у(А)+у(В) )/2
х(О)= ( 2+8 )/2 у(О)= ( 4-4 )/2
х(О)= 5 у(О)= 0
О( 5 ; 0) .
В) d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка.
АО=√( (5-2)²+(0-4)² )=√(9+16)=5.
С) Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , (х₀ ; у₀)-координаты центра.
(x – 5)²+ (y – 0)² = 5²
(x – 5)²+ y² =25
1) равновеликий значит, что площади равные. S = 8 × 20 и в то же время S = a × 16
8 × 20 = a × 16
a = 10
2)d1 = 8^2 + 20^2 = 464
d2 = 10^2 + 16^2 = 356
Нет
3)треугольник АНВ прямоугольный с А = 45 градусов, значит АНВ ещё и равнобедренный, то есть АН = НВ = 6
АС = 15
S = 1/2 × 15 ×6 = 45
4)P = 2x + 14 + 26 = 60. Отсюда 2x = 20, x = 10
боковая сторона равна 10.
S = полусумма оснований умноженая на высоту
высоту найдём из прямоугольного треугольника
h = 100 - 36 = корень из 64 = 8
S = (14 + 26)/2 × 8 = 160
Объяснение:
А) х=(х₁+х₂):2 ,у=(у₁+у₂):2 ,где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка , (х;у)-координаты середины.
А(2;4) ,В(8;-4) . О-середина АВ , найдем ее координаты.
х(О)= ( х(А)+х(В) )/2 у(О)= ( у(А)+у(В) )/2
х(О)= ( 2+8 )/2 у(О)= ( 4-4 )/2
х(О)= 5 у(О)= 0
О( 5 ; 0) .
В) d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка.
АО=√( (5-2)²+(0-4)² )=√(9+16)=5.
С) Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , (х₀ ; у₀)-координаты центра.
(x – 5)²+ (y – 0)² = 5²
(x – 5)²+ y² =25
Объяснение:
1) равновеликий значит, что площади равные. S = 8 × 20 и в то же время S = a × 16
8 × 20 = a × 16
a = 10
2)d1 = 8^2 + 20^2 = 464
d2 = 10^2 + 16^2 = 356
Нет
3)треугольник АНВ прямоугольный с А = 45 градусов, значит АНВ ещё и равнобедренный, то есть АН = НВ = 6
АС = 15
S = 1/2 × 15 ×6 = 45
4)P = 2x + 14 + 26 = 60. Отсюда 2x = 20, x = 10
боковая сторона равна 10.
S = полусумма оснований умноженая на высоту
высоту найдём из прямоугольного треугольника
h = 100 - 36 = корень из 64 = 8
S = (14 + 26)/2 × 8 = 160